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It is shown that a potential g exists such that a selfadjoint realization of lu=
—u" 4+ q(x)uhas singular continuous spectrum in an interval / while all the selfadjoint
realizations of Tu= —u" + {g(x)+v(x)}u, where v is a continuous function with
compact support, have absolutely continuous spectrum in /. © 1989 Academic Press, Inc.

1. INTRODUCTION

In J. Weidmann [9] it was proved that if L is a selfadjoint realization
of the differential expression
(u)(x)= —u"(x)+ q(x) u(x),  xe(a, ),

where ¢ is a real valued, locally integrable function defined in (a, c0) and
which satisfies certain conditions in the interval (¢, co) with ¢ € (a, o0), then
L has absolutely continuous spectrum in (0, co) (see [2] for definition).

From this result it seems that the absolute continuity of the spectrum of
L is determined by the behavior of the potential ¢(x) for x>c¢. This
suggests the following conjecture (which goes back essentially to
J. Weidmann [9]): Let / be a formally selfadjoint differential expression in
(a,b) and A a selfadjoint realization. For ce(a, b) let each selfadjoint
realization A4, of [ in (c, b) have absolutely continuous spectrum in (4, 1).
Then A also has absolutely continuous spectrum in (4, 1). However, it was
proved in [2] that this conjecture is false.

The above conjecture can be rewriten as follows supposing a=0 is a
regular point and b= oo:

If the operator L, generated by

Tu= —u"(x)+ §(x) u(x), xe[0, ),
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where
4(x) == q(x+c),

and the boundary condition
u(0) cos f+u'(0) sin f=0,

has absolutely continuous spectrum in an interval I for all f e [0, 2n), then
the operator L, generated by

lu= —u(x)"+ q(x) u(x), xe [0, o)

and
u(0)cosa+u'(0)sinax=0

has also absolutely continuous spectrum in /.

Here g can be considered as a perturbation of ¢ and in general there will
not exist any p e (0, o) such that §(x)= g(x) for x> p. The perturbation
q affects g up to infinity, so to speak.

Now we make the same conjecture but for perturbations § which are
really local, that is to say, perturbations of the form

g(x) := q(x) + v(x),

where v(x) is a function with compact support S < (0, p).

The purpose of the present work is to show that also in this case the
above conjecture is false, thus proving that only the behavior of the poten-
tial g(x) near infinity cannot determine whether the spectrum is absolutely
continuous or if it has a singular part.

2. STATEMENT OF THE MAIN RESULT

We construct first an operator L with singular continuous spectrum in
the following way. Let

p;:R—>R, =l 2
be non-decreasing functions such that
(a) p,(4) is absolutely continuous in the interval /< R,

doy

=>N>0,
di

rel

P, is singular continuous in /.
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(b) The function p := p, + p, satisfies the hypotheses of the theorem
of Gelfand and Levitan, (see [7]).

By (b) we know that there exists a differential operator L with spectral
function p, defined through the differential expression

(lu)(x) = —u"(x)+ q(x) u(x), O0<x<o0,

where ¢g: R* — R is continuous, and the boundary condition
u(0) cos o+ 2'(0) sin . =0.

The operator L is exactly the operator L, used in Section 3 of [2].

Here we note that the potential g(x) cannot decay fast, as x — oo, otherwise
the spectrum would be absolutely continuous; see, for example, [9].

Let v:R™ — R be a continuous function with compact support ScR ™.

Let us define the selfadjoint operator L as the one generated by the
differential expression

Tu= —u"+ {q(x)+v(x)}u, x€ [0, o)

and the boundary condition
u(0) cos f+ u'(0) sin =0, pel0,2n).

Choose now p eR such that S< [0, p).
We define the operator L, as the operator generated through the
differential expression

lu= —u"+ q(x)u, xe[0,p]
and the boundary conditions
u(0)cosa+u'(0)sinax=0

u(p)=0.

Similarly we define the operator L, as the operator generated by the
differential expression

u= —u"+ { q(x)+v(x)}u xe[0,p]
and the boundary conditions
u(0) cos f+u'(0)sin f=0
u(p)=0, pel0,2n).
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L, and L; are selfadjoint operators generated by differential expressions
which are regular in [0, p] and therefore their spectra consist only of
isolated eigenvalues.

Our main result is the following

THEOREM. If L, and Ly do not have exactly the same spectrum, then the
operator L has only absolutely continuous spectrum in I.

If we remember that the operator L by construction has singular
continuous spectrum in I, what the theorem says is that if the local
perturbation v(x) satisfies certain conditions, then the singular continuous
spectrum disappears and we have pure absolutely continuous spectrum.

3. SOME LEMMAS

Before we prove the theorem we need some lemmas.
Consider a fundamental system {u,(x, z), u>(x, z)} of solutions of

I, = —ui(x) + q(x) up(x) = zug(x), k=12, 0<x<o0
which satisfy the conditions
u(0, z) cos o+ (0, z) sin =0
us(p, z)=0
us(prz)="1¢

The point p is chosen as before, that is to say, p is to the right of the
support of v(x).
Consider also a fundamental system {#,(x, z), @,(x, z)} of solutions of

T = —al(x)+ { q(x) + v(x)} i, = zii,(x), k=109, 0<x<o
such that #, and @, satisfy the conditions
#,(0, z) cos B+ #(0, z) sin f=0
i,(p,z)=0
us(p, z)=1.

It is known (see [1]) that if z is non-real, there is a function m(z) such
that

m(z) u(x, z) + uy(x, z) € L,(0, o).
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We call this function the Weyl-Titchmarsh-Kodaira coefficient (WTK
henceforth) of L with respect to {u,(x, z), u,(x, z)}.
Let /i be the WTK coefficient of L with respect to i, (x, z), #,(x, z).

LemMA 1. Let A€ C be such that Im A>0. Then we have

B m(4)
~ Ci(A) = Cy(A) m(4)’

m(4) (1)

where C,(A) and C,(A) are analytic functions.

Proof. If Im A>0 it follows that W(u,, u,)(A) #0 and W(ii,, ii,)(A) #0
(where W denotes the Wronskian). Otherwise the selfadjoint operators L,
and L; would have a non-real eigenvalue.

The WTK coefficients m and 7z are given by

. u2(x7 j’)
A)=—1
rild) xinio u(x, 1)

and

N\ : aZ(x’ )")
)= =l = )

Since u, and #, are solutions of the same equation for x > p and satisfy
the same conditions at p it follows that

Us(x, A) = tl5(x, A) when x> p.

Therefore we have

_ . Up(x, 4)
A= — i Al
Al = =00 o e )

Since #(x, 4) is a solution of /u = Au when x> p it follows that
di(x, A)=C(A) uy(x, ) + C5(R) uy(x, 1) if x> p.
Therefore

o . us(x, )
m(/l) - _.lemm Cl(;t) U1(X, )v) it CZU') uZ(x’ j’)

Dividing by u,; and taking the limit follows (1).
The analyticity of C(4) and C,(4) is a consequence of the analyticity of
u;(x, ), uy(x, 1), and i@, (x, 4) with respect to A. Q.E.D.
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LemMMA 2. If L, and Ly do not have exactly the same spectrum we have
Wiy, uy)(x, 4) £0
(W denotes the Wronskian).

Proof. Suppose that W(i,, u,)(x, A)=0 for AeR and x> p. It follows
that for x> p, 1eR,

i(x, 1)=k(1) uy(x, 4)

k(4)#0.

We know from the hypotheses that
uy(p, 4)=0=1ii5(p, )
uy(p, A)=1=1i5(p, 2).

Therefore,

Wiuy, uy)(p, £)=u(p, 1)
and

Wiy, 4,)(p, A)=1t(p, 1)
Hence

Wi, )(p, 2) = k(L) W(uy, uy)(p, ).
Now, the Wronskian is the same for all xe (0, p), so we can write
Wiy, i) (4) =k(4) W(uy, uy)(4)

for ZeR. This implies that the selfadjoint operators L, and L, have the
same eigenvalues and we have reached a contradiction. Q.E.D.

Let A be the set of points 4;e I such that W(u,, u,)(4;) =0, points u,e [
such that W(a,, u,)(1;) =0, and points y;e I such that W(a,, i,)(y;)=0.

LEMMA 3. For uel =1\A there exist N(u)>0 and r(u) >0 such that
|Ci(u+ie)— Cy(u+ie) m(u+ie) = N(u)>0
holds, whenever 0 <& <r(u).

Proof. By the definition of C, and C, (see Lemma 1 above) we have

i (x, A)=C(A) uy(x, A)+ Co(4) uy(x, 4)
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(when x> p). It then follows that

"y W(a17 uZ)

S = s )

. Wiy, u,)
Cal)= Wiu,, u,) !

from which we conclude that C, and C, are analytic if #,, u,, u, are.
Suppose now that A=u+ie, ¢>0, is such that

Wiy, uy)(4) #0.
Then,

C,(4) m(A) 5, ’Im m(A) ’ B ‘Im Ci(4)
Wiy, u )(A)  Wiluy, uy)(4) - Wiu,y, uy)(4) Wiy, u,)(4) .

The function p, in addition to being absolutely continuous has by
hypothesis (a) the property
a

>N>0.
di

rel

This implies that for ueI’, 0 <e<k’, k' small enough,

o (s
J mdﬂn(#)>1{>0

and we conclude that there is a constant k” > 0 such that if 0 <& <k” then
m .
—Imm(u+ze)>K>0
for uel'. (See [2].)

Let ‘us note that C,(41) and W(i,, u;)(A) are real whenever A is real.
Therefore

m(u + ie)
Wiuy, u,)(u+ ic)

‘Im > N(u)>0

Ci(u+ie)
_l Wiy, u,)(u+ie)

if e<k(u), uel', k small enough.
Now, we are assuming that A=wu-+is, &>0, is such that
Wi, u,)(4)#0, therefore

i C,(2) mi4)
| Wiy, uy)(4) ’ W(il,, ul)()u)—i- W(u,, u,)(4)

2 [W(dy, uy)(4)] N(u)>0

if 0 <e<k(u)
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If we recall the form of C, we obtain
IC(4) = Co(A) m(A)| = | W (@, uy )(A) N(u)  if 0<e<k(u)

Since W(#i,, u,)(u)#0 because ue I' we can take a closed ball B, (r) with
center in » and radius r small enough, in particular r <k(u), such that
Wi, u,)(4)#0 for every 4e B,(r).

Since W(i,, u,)(4) is analytic it reaches its minimum M in B,(r). Hence

|Ci(u+ie) — Cylu+ ie) m(u+ie)| = MN(u)= N(u)>0

if0<e<r(u)foruel Q.E.D:

With the help of the preceding lemmas we shall prove the following
result. Remember that 7 denotes the WTK coefficient of L with respect to
ﬁl(xs 2)9 ﬂ2(x’ Z)'

LemMmA 4. If the operators L, and Ly do not have exactly the same
spectrum then it is not possible that

lim |m(u + ie)| = o
el0

for uel =1\A.
Proof. Suppose we have

lim |/#1(u + ie)| = oo.
el0

Using Lemma 1 we have

. m(A)
lim - = —| = 0,
210 | Ci(4)— Cy(A) m(4)

where A=u+ic,uel
From Lemma 3 we know that we can choose k() small enough so that
if 0<e<k(u), uel, then
|Ci(u+ie)— Cy(u+ie) m(u+ic)| = N(u)>0.

Moreover, since we are supposing that lim, , [#m(u+ie)| = c0, we can
choose k(u) small enough so that

|m(u+ie)| >M>0 if O<e<k(u)

holds, where M >0 is a given arbitrary constant.
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Therefore if 0 <& < k(u) then
|m(u+ie)| = N(u) M > 0.
Since M is arbitrary it follows that

lim |m(u + ig)| = oo for uel
el0

Now, if |m(4)| #0 we have

I 1
S \ ) G0 m(/’.)’
[m(4)] |m(4)]
1
= C.h)
|Czu)|—]m{
therefore
lim [m(u +ie)| <li : =
dp e S e ey | ol o)~ ICow)]
l 2(u+zs)|—’ m(u + ie)
. Wiu,, u,)
- VV(al,ul)(”)‘“O

since if ue I’ we have W(i,, u,)#0. But this contradicts the assumption

lim |m(u + ie)| = co. Q.E.D.
el0

4. PROOF OF THE THEOREM

Let / be the spectral function of the operator L. We shall prove first that
p is continuous in /.
Let , L be the selfadjoint operator generated by the differential expression

(lu)(x)= —u"(x)+ g(x) u(x), 0<x<ow
and the boundary condition
u(0) cos 8+ u'(0) sin 6 =0, 0e [0, 2n).

(In particular ,L=L.)
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LEMMA 5. The operators 4L have only absolutely continuous spectrum in
Iif 6+#a

For the proof of this lemma see [3].

LEMMA 6. The spectral function p of the operator L is continuous in I.

Proof. We shall prove that
lu=17u, AT (2)

does not have L, solutions.

To prove this suppose that v is a solution of (2) and that v belongs to
L,(0, o0). Then we have that

(Iv)(x) = (Iv)(x) = Av(x)

if x>pand ve L,(p, o).

Let {v,,v,} be a system of solution of /v,=zv, for xe [0, oo) which
satisfy

v(p,z)=1, v,(p,2)=0
vi(p, z) =0, v5(p,z)=1

for all zeC.
There exist C,(4), C,(4) e C such that

h(x, A) :== Cy(A) vy(x, 4) + C5(4) vy(x, 4) = v(x, 4) for xe[p, »).
It follows that A(x)e L,(0, o) and that
(th)(x) = Ah(x).

But Lemma 5 implies that /u=iu does not have solutions in L,(0, o0)
when A€l Therefore we have a contradiction and (2) does not have L,
solutions. This implies that the spectral function p is continuous (see [4]).

QED.

The fact that (2) does not have L, solutions implies (see [4]) that [ is
contained in the continuous spectrum of any selfadjoint realization of 7 in
L,(0, c0).

Now let us define the symmetric derivative of the spectral function of the
operator L

Dj(u):= lim plutn)—plu—n)
n—0 2”]
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LEMMA 7. Suppose that L, and Ly do not have exactly the same
spectrum. If Dp(u) exists, then

|Dp(u)| < oo for uel =I\A.
Proof. We know that

DO L) B 11r(u+zze)=j°o _dp(u),

Wi, i) (u+ ie) —w (u—p)+e
where H is an analytic function. H(z) is real if z real. See [2].
Furthermore we have that

2

N 1 u+e g N
SdiWz= | s diu)>

" : plute)— plu—e)
G Edus (W—p) +e '

2¢

Therefore

m(u + ie)

‘ plute)—plu—ce)
Wiy, ti,)(u+ i)

—Im H(u+ie) > = 0.
2¢

From this inequality we see that if Dj(u)= oo then

lim |#1(u + ie)| = o for uel,
el0

which contradicts Lemma 4. Q.E.D.

If p'(A):=lim, _ ,((p(A+h)—p(A))/h) exists, then Dp(A) exists and
Dp(A)=p’'(4). Therefore by Lemma 7 above p'(A)< oo if Ael’.

Proof of the Theorem. Let E_cI be the set of points A where
p'(A)=o00. Let us denote also by g the measure associated with the
monotone non-decreasing function p. By a theorem of de la Valleé-Poussin
(see [8]) we know that if X' = 7 is a measurable set then

) =pXNEL)+ | px)dx.

Since p is continuous by Lemma 6 and E_ < A, where 4 is a finite set

by Lemma 7, it follows that § is absolutely continuous in 7/ and the
theorem is proved. QED.

The theorem requires L, and L, not to have exactly the same spectrum.
Now we shall construct v: R* — R continuous and with compact support
S <R such that for every f € [0, 2r) this condition is satisfied.

We know that there exists an increasing unbounded sequence
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Ags Ars s Ans ... Of eigenvalues of L, and that the eigenfunction correspond-
ing to the n-th eigenvalue has exactly » zeros in the open interval (0, p).
(See, for example, [6].)

Choose 1, such that n>4 and

A,>M= sup |q(x)|.

xe (0, p)

Choose an open interval J=(a, b) < (0, p) such that the n zeros of the
eigenfunction corresponding to 4, are contained in J and let k> 4,,.
Let v:R™ — R be a continuous function satisfying
(a) v(x)=k—gq(x)if xeJ,
(b) wv(x)>0if xe (0, p),
(¢) v(x)=0if xeR"\(0, p)

(in particular v(0)=uv(p)=0).
Define then

G(x) :== gq(x) + v(x).

Using the comparison theorem (see [1,6]) we can prove that the
solutions of

—u"+(g(x)—4,)u=0

have at most three zeros in (0, p), proving that the n-th eigenvalue of L,
cannot be the n-th eigenvalue of L.

Therefore we have constructed a perturbation which satisfies the
hypothesis of the theorem for every f € [0, 2n).

Now let L be the operator

Lu= —u"+ qu (3)

subject to the boundary conditions
u(0) cos o+ u'(0) sin =0 (4)
u(l)cos f+u'(1)sin =0, a, fe [0, ). (5)

In Hochstadt and Lieberman [5] the following result is proved:
THEOREM (See [5]). Consider the operator (3) subject to (4) and (5)
where q is summable on (0, 1). Let {1,} be the spectrum of L subject to (4)

and (5).
Consider a second operator

Lu= —u'+ qu,
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where § is summable on (0, 1) and
g(x)=gq(x) on (3 1)

Suppose that the spectrum of L subject to (4) and (5) is also {1,}. Then
q(x)= q(x) almost everywhere on (0, 1).

By scaling we can take (0, p) instead of (0, 1) and §(x) = ¢g(x) on (p, p)
instead of G(x)= g(x) on (3, 1).

With the help of this theorem if we choose pe R such that S< (0, 3p),
where S is the support of the perturbation v(x), then it follows that L  and
L, do not have the same spectrum when o = 5, unless v(x) = 0. Then by the
theorem proved in this work it follows that every perturbation v(x)
continuous and not identically null changes singular continuous spectrum
into absolutely continuous spectrum.

We have proved therefore the following result, where /<= R is an interval.

COROLLARY. There exists a continuous potential q(x) and a € [0, 1) such
that

lu= —u"+ q(x)u, xe[0, o)
u(0) cos e+ u'(0) sin x =0

has singular continuous spectrum in I and such that for every continuous
function v(x), not identically null and with compact support, the operator
generated by

Tu= —u"+ {q(x)+v(x)}u, xe [0, o)
and the boundary condition
u(0) cos o+ u'(0) sin x =0

has only absolutely continuous spectrum in I.
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