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Abstract. The relation between the set where a Sturm—Liouville problem does not
have square integrable solutions and the essential spectrum is studied. A character-
ization of the spectrum is given when the spectrum is a perfect set.

1 Introduction

Some time ago I was trying to understand the behavior of the spectrum of Sturm-—
Liouville operators under local perturbations to the potential. The interesting spec-
trum was the singular spectrum since the absolutely continuous part is well known to
be stable under this kind of perturbations. The singular continuous part resulted to
be extremely unstable and it was the turn of the pure point part. Was dense point
spectrum stable?. This question was studied in several papers [1] [2]. Before a result
about unstability in this case was obtained, I came accross a strange set which had
the property of not accepting eigenvalues for any local perturbation [3]. Later on,
thanks to a conversation with Prof. H. Kalf, I realized this result could throw some
light on an old problem of P. Hartman and A. Wintner [4].

The problem is to see whether two sets are always equal. Using the result about the
forbidden set for eigenvalues mentioned above, one can prove that when the spectrum
.~ is a perfect set, that is, when the problem has only essential spectrum, the two sets of
P. Hartman and A. Wintner coincide. That these sets can not always be identical fol-
lows easily from a theorem on inverse spectral theory due to Gelfand and Levitan (see
[5, p. 282]). This will be made precise in what follows.

2 The Problem

Consider the differential expression
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lu=-u"+qz)u 0<z<x

where ¢ is a real valued, locally integrable function.
By definition, a solution of

lu=M\u

is a continuously differentiable function u : [0,00) — R such that »' is absolutely

continuous and the equation holds almost everywhere. A is a real parameter.
The differential expression [ generates selfadjoint operators L, as follows:

Laui=lu

{u € Ls(0, 00)|u,u’ are locally absolutely continuous,

D(La) —
lu € Ly(0,00) and u(0) cosa + u'(0) sina =0}, « €[0,7)

The spectrum of L, is the set

g ol Ea)k: = {A € R|(AT — L,) ™!
does not exist or if it exists is not bounded}

The essential spectrumn, denoted o.ss (L, ) is the set of limit points of o(Lg).
It is well known [6, p. 38] that the essential spectrum does not depend on a,

therefore we shall write gess(La) = Tess
Let us denote by S* the complement of o4, that is

— € —
St =0, =R\oss-

and by Sy the interior of the set

S={AeR | Ju solution of lu = Au
o
such that / u?(t)dt < oo}
0

In 1949 P. Hartman and A. Wintner [4] attempted to solve the following:

Problem
Is always So = S*7

r
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3 The Solution

In M.S.P. Eastham & H. Kalf [6, p. 42] it is remarked that

& So = S* <= SNo.s, has empty interior

Part (b) of the following result contradicts one direction of .
Theorem

a) So =S* = SNo.ss has empty interior.

)
b) SNoess has empty interior /= Sy = S*.
c) It is not always true Sp = S™.

)

d) If ¢ is a perfect set, then Sy = S*.
Proof

a) If SNo.ss does not have empty interior there exists an open interval I C SNoes;.
Therefore I C SpNoess and Sy # S™.

b) Consider the case where the essential spectrum has an isolated point p. This
point p has to be limit point of isolated points of the spectrum which have to
be eigenvalues. If p € S then p € Sy, since points in the resolvent set are in S
(see [6] p. 39). Therefore p € Sy N oess and Sy # S*.

We know, that it is possible to construct an operator L, which in a given interval
has an isolated point of o.,,, as required above. This follows from the inverse
theorem of Gelfand and Levitan see [5]. In fact this teorem allow us to consider
any spectral situation locally. See Remark 2.

c) It is immediate from the proof of b).

d) We have only to prove So C S* since it is always true Sy D S* (see [6], p. 39).
Assume this is not the case, that is So N 0ess # ¢, then there exists an interval
I C Sy such that I N oegs # ¢.

If we consider a closed interval J contained in I such that JNoess = J N0 # @
we may apply the theorem in [3] (see Remark 2) and conclude that J NS¢ # ¢. This
is a contradiction since J C Sy C S.

QED
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Remarks

1. From d) we have the following characterization of the essential spectrum when
the spectrum is a perfect set, i.e. when o = o4.

0 = Oegs = S§ = {\ € R/lu = Au does not have solutions inL?(0, 00)}

The line above a set denotes closure. It is clear that the set on the right does
not depend on the boundary condition a.

2. It is possible to have points of g.ss in S which are not isolated points of oess.
To see this consider the triadic Cantor set C. The set C is the subset of [0, 1]
o0
consisting of all numbers of the form Y ¢,/3", with ¢, = 0 or 2; its complement
n=0
in [0, 1] is a countable union of non overlapping intervals. Let {S,}32, be the
set which consists of the middle points of these intervals.

Choose S; to be the middle point of the interval (1/3,2/3), S2 and S3 the middle
points of the intervals (1/3%,2/3%) and (7/3%,8/3%) respectively and so on.

Let us consider a spectral function p which satisfies
dp(N)

(z — \)?
R\s

where I = [0, 1] and define p to be a discrete measure in I as follows:

<@

p5)) = T -

‘Znn‘l

Then

dp()\) _i p({S:})
( :

/ (z=AP “(z-5)
(o) o.0] 1
<> 4-3"p({Sa}) =) 5 <
n=1 n=1

if z € C, the Cantor set, since in this case |z — S| > 557

ﬁ__,
o R TN

[6]
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Moreover

o) = Z HUsdl=) s 32nnz

Therefore

/(IL_():\));<OO if x € C.

—0o0

According to a theorem of Aronszajn [7] C' C S and it follows that [0,1] C S
and (0,1) C Sp. Therefore it is not possible to have Sy = o¢,;,.

The theorem in [3] states the following: If for an interval .J the set 4 :=JNgo
is perfect, then A N S¢ is an uncountable set.

The example above shows that o can not be replaced by o¢ss in the statement
of the theorem.
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