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Abstract. We consider the survival probability of a state that evolves according to the
Schrödinger dynamics generated by a self-adjoint operator H . We deduce from a classical
result of Salem that upper bounds for the Hausdorff dimension of a set supporting the
spectral measure associated with the initial state imply lower bounds on a subsequence of
time scales for the survival probability. This general phenomenon is illustrated with appli-
cations to the Fibonacci operator and the critical almost Mathieu operator. In particular,
this gives the first quantitative dynamical bound for the critical almost Mathieu operator.
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1. Introduction

In this paper, we study solutions of the time-dependent Schrödinger equation

i∂tψ(t)= Hψ(t),

where H is a bounded self-adjoint operator in a separable Hilbert space H and
ψ(0)=ψ ∈H with ‖ψ‖=1. The case of main interest to us is when H=�2(Zd) and
H is a Schrödinger operator, H =�+ V . We denote the spectrum of H , which is
a compact subset of R, by σ(H) and the spectral measure associated with the pair
(H,ψ) by µψ . The time evolution of the state ψ is given by ψ(t)= e−i t Hψ .

A quantity of natural physical interest is the survival probability, that is, the
probability of finding the state in the initial state at time t ,

|〈ψ(t),ψ(0)〉|2 =
∣
∣
∣〈e−i t Hψ,ψ〉
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The second identity holds by the spectral theorem. If the spectrum of H is point
spectrum, it follows from a theorem of Wiener, see ([10], Lemma 2.6, p. 54.), that
the survival probability does not tend to zero as t goes to infinity. If the spectrum
of H is absolutely continuous, then from the Riemann-Lebesgue Lemma it follows
that the survival probability tends to zero ([10], p. 57).

An important result about the behavior of ψ(t) in time average is the RAGE
theorem, see [7]

THEOREM 1.

lim
t→∞

1
T

T∫

0

〈ψ, (t), Aψ(t)〉dt =0

for any compact operator A if and only if µψ is purely continuous

We refer the reader to Last [7] for the RAGE theorem and a general discussion
of the survival probability and other natural ways of measuring how fast the state
ψ(t) changes with time.

To study the power-law decay of the survival probability, let us define

γ±
ψ = lim sup

inf
t→∞

log
∣
∣µ̂ψ(t)

∣
∣
−2

log t
.

It follows from the definition that

γ−
ψ ≤β ⇔ lim sup

t→∞
|µ̂ψ(t)|2tβ+ε=∞ for every ε>0

and

γ+
ψ ≥β ⇔ lim inf

t→∞ |µ̂ψ(t)|2tβ−ε=0 for every ε>0.

It is well known, and discussed extensively in [7], that continuity proper-
ties of µψ imply bounds for the time-averaged survival probability. Without the
time-average, on the other hand, there are far fewer results; we refer the reader to
[5,11] and references therein.

In [5] the authors consider the pointwise behavior of the Fourier transform
of the spectral measure for discrete one-dimensional Schroedinger operators with
sparse potentials. They find a resonance structure which admits a physical inter-
pretation in terms of a simple quasiclassical model. In [11] the author studies, how
small perturbations of the operator can affect the property of the survival proba-
bility being zero at infinity.

In this paper, we consider survival probabilities that are not time-averaged and
employ a classical theorem of Salem [12] to deduce upper bounds for γ−

ψ in cases
where upper bounds for the Hausdorff dimensions of the support of the spectral
measures are known.
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2. Time Behavior of Survival Probabilities

Let us recall some basic facts about dimension of sets and measures. Given S ⊆R,
a δ-cover is a covering of S by a countable set of intervals In of length at most δ.
For β ∈[0,1], the β-dimensional Hausdorff measure of S is

hβ(S)≡ lim
δ→0

[

inf
δ−covers

∞
∑

n=1

| In |β
]

.

Notice that h0 is the counting measure and h1 the Lebesgue measure. For any S,
there is a number βS ∈[0,1] such that hβ(S)=0 if β>βS , and hβ(S)=∞ if β<βS .
This βS is the Hausdorff dimension of S, denoted by dimH S.

DEFINITION 1. Let µ be a Borel measure on R and β ∈[0,1].
(i) µ is called β-singular, denoted βs, if it is supported on a set S with hβ(S)=0.

(ii) µ is called β-dimension singular, denoted βds, if it is supported on a set S
with dimH S ≤β.

Here, we say that µ is supported on S if µ(R\S)=0. Note that if µ is βs, then
it is βds, therefore the theorem below can be applied whenever our spectral mea-
sures are β-singular. We will discusse some cases in the next section.

In [12] R. Salem considered continuous monotonic fuctions which are singular
and of the Cantor type, that is, which are constant in each interval contiguous to
a perfect set of measure zero. This perfect set is called in [12] the spectrum of the
function.

He proves the following result (thm III in[12]).

THEOREM 2. No singular function (except constant) exists having as spectrum
a perfect set of Hausdorff dimension α > 0, and whose Fourier-Stieltjes transform
belongs to Lq for some q< 2

α

Likewise, no singular function (except constant) can have as spectrum a perfect
set of Hausdorff dimension α > 0, and have Fourier Stieltjes coefficients of order
n− α

2 −ε, ε>0 (no matter how small ε is).

We shall reformulate the above theorem as follows:

THEOREM 3. Let ψ ∈H be a normalized vector and assume that µψ is βds with
β <1. Then γ−

ψ ≤β. That is,

lim sup
t→∞

|µ̂ψ(t)|2tβ+ε=∞ (1)

for every ε>0. Moreover,

µ̂ψ(t) �∈ L p(0,∞) for every p<
2
β
. (2)
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Proof. Essentially, this follows from [12, Theorem III]; see also [3, Sections 4.3
and 4.4], [4, Théorème III on p. 106], and [9, Chapter 12]. We give a sketch of the
argument.

Fix a set S with dimH S ≤β that supports µψ . The Fourier transform of µψ is
a bounded continuous function which obeys

µ̂ψ(−t)= µ̂ψ(t). (3)

Assume that (1) fails. Thus, observing (3), it follows that there is a constant C1

with

|µ̂ψ(t)|≤C1|t |−
γ
2 (4)

for some γ ∈ (dimH S,1). Choose δ∈ (dimH S, γ ) and consider the δ-energy of µψ ,
that is,

Iδ(µψ)=
∫∫

dµψ(x)dµψ(y)

|x − y|δ .

It follows from the Plancherel theorem that

Iδ(µψ)=C2

∫

|t |δ−1|µ̂ψ(t)|2 dt (5)

for some suitable constant C2; compare [9, Lemma 12.12].Here we use that H is
bounded and therefore µψ supported on a compact set

Thus, combining (4) and (5), we see that

Iδ(µψ)=C2

∫

|t |≤1

|t |δ−1|µ̂ψ(t)|2 dt +C2

∫

|t |>1

|t |δ−1|µ̂ψ(t)|2 dt ≤

≤ C2

∫

|t |≤1

|t |δ−1 dt +C1C2

∫

|t |>1

|t |δ−1|t |−γ dt<

<∞

since δ > 0 and δ− γ < 0. This shows that S has positive δ-capacity. By [3, Theo-
rem 4.13], this implies dimH S ≥δ. We obtain a contradiction because δ was chosen
strictly larger than dimH S.

Now assume that (2) fails. Then we can choose ν >0 such that

dimH S +ν <1 (6)

and

µ̂ψ(t)∈ L p(R) for p = 2
dimH S +ν , (7)
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where we again used (3). Choose δ ∈ (dimH S,dimH S + ν) and consider the
δ-energy of µψ . We have

Iδ(µψ)=C2

∫

|t |≤1

|t |δ−1|µ̂ψ(t)|2 dt +C2

∫

|t |>1

|t |δ−1|µ̂ψ(t)|2 dt ≤

≤ C2

∫

|t |≤1

|t |δ−1 dt +

+C2

⎛

⎜
⎝

∫

|t |>1

|t | δ−1
1−dimH S−ν dt

⎞

⎟
⎠

1−dimH S−ν ⎛

⎜
⎝

∫

|t |>1

|µ̂ψ(t)|p dt

⎞

⎟
⎠

dimH S+ν

<

<∞.

Here we used Hölder’s inequality in the second step and the fact that

δ−1
1−dimH S −ν <−1,

which follows from our choice of δ, in the third step. As before, we may infer that
S has positive δ-capacity and dimH S ≥ δ, which contradicts our choice of δ. This
concludes the proof.

Remark. If the measure µψ is supported on a set of Hausdorff dimension 1, then
the conclusions of Theorem 3 hold, provided µψ has a non-trivial singular com-
ponent. Indeed, if µψ is not purely absolutely continuous, then µ̂ψ(t) �∈ L2(R); see
[10, Corollary on p. 57]. This implies both (1) and (2) in this case.

3. Applications

We will first present applications of Theorem 3 to two quasi-periodic operators
acting in �2(Z). In both cases, non-trivial upper bounds for the Hausdorff dimen-
sion of the spectrum are known. Since the spectrum supports all spectral measures,
we can use it as the set S in question.

The first is the Fibonacci operator

[HFib(λ, θ)]ψ](n)=ψ(n +1)+ψ(n −1)+λχ[1−α,1)(nα+ θ mod 1)ψ(n),

where λ>0, α=
√

5−1
2 is the inverse of the golden ratio, and θ ∈T=R/Z. It is easy

to see that the spectrum of HFib(λ, θ) does not depend on θ . It does, however,
depend on λ, and it was shown in [1, Theorem 2] that for λ≥ 8, its Hausdorff
dimension is bounded from above by log(1+√

2)

log
[

1
2

(

(λ−4)+
√
(λ−4)2−12

)] . Thus, combining

this result with Theorem 3 above, we obtain:
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COROLLARY 1. If H = HFib(λ, θ) with λ≥8 and θ ∈T arbitrary, then we have for
every initial state ψ ,

γ−
ψ ≤ log(1+√

2)

log
[

1
2

(

(λ−4)+
√

(λ−4)2 −12
)]

and

µ̂ψ(t) /∈ Lq(0,∞) for every q<
2 log

[
1
2

(

(λ−4)+
√

(λ−4)2 −12
)]

log(1+√
2)

.

In particular, we see that γ−
ψ can be made arbitrarily small by making λ suffi-

ciently large. Some of the results from [1] have been generalized to other frequen-
cies α by Liu et al. in [8]. Their results may be combined with Theorem 3 in an
analogous way.

The second application of Theorem 3 we present involves the almost Mathieu
operator

[HAMO(λ,α, θ)]ψ](n)=ψ(n +1)+ψ(n −1)+2λ cos(2π(nα+ θ))ψ(n),

where λ>0, α∈T is irrational, and θ ∈T. It is known that the Lebesgue measure
of σ(HAMO(λ,α, θ)) is equal to 4|λ−1| and hence it vanishes if and only if λ=1.
The Hausdorff dimension of the spectrum of HAMO(1, β, α) was studied by Last
in [6]. From Theorem 3 above and [6, Theorem 2], we obtain:

COROLLARY 2. Consider the almost Mathieu operator H = HAMO(1, α, θ). If α is
such that there are rational numbers pn

qn
with qn →∞ and

lim
n→∞ q4

n

∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
=0,

and θ ∈ T is arbitrary, then for every initial state ψ , γ−
ψ ≤ 1

2 and µ̂ψ(t) �∈ Lq(0,∞)

for every q<4.

Remarks . (i) In addition to this explicit class of well-approximable α, there
is a non-explicit class for which a stronger result can be shown. Indeed, a
result in preparation by Last and Shamis for the almost Mathieu operator
H = HAMO(1, α, θ) will imply that there is a dense Gδ set of α’s for which
we have γ−

ψ =0 for every θ ∈T and every initial state ψ .
(ii) This result is of interest because quantum dynamical questions are notori-

ously difficult for the critical almost Mathieu operator, whereas the spec-
tral type can be determined for all frequencies and all but countably many
phases via duality and zero-measure spectrum.
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Two other applications of Theorem 3 we only indicate briefly: In [2], del Rio
et al. showed that local perturbations of the Anderson model in the localization
regime (large coupling or suitable energy regions) have zero dimensional spectral
measures. They even gave quantum dynamical consequences in terms of moments
of the position operator. Theorem 3 above complements their result by providing
results for survival probabilities. Finally, Zlatoš [13] exhibited Schrödinger opera-
tors with sparse potentials whose spectral measures are supported by sets of non-
trivial Hausdorff dimension. Again, Theorem 3 applies and yields consequences for
survival probabilities.
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