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We consider Sturm–Liouville operators in the half axis generated by shifts of the potential and
prove that Lebesgue measure is equivalent to a measure defined as an average of spectral
measures which correspond to these operators. This is then used to obtain results on stability
of spectral types under change of parameters such as boundary conditions, local perturbations,
and shifts. In particular if for a set of shifts of positive measure the corresponding operators
have �-singular, singular continuous and (or) point spectrum in a fixed interval, then this set
of shifts has to be unbounded. Moreover, there are large sets of boundary conditions and
local perturbations for which the corresponding operators enjoy the same property.

Keywords: Sturm–Liouville operator; Spectral measure; Singular spectrum; Shifted potentials
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1. Introduction

In several proofs of localization phenomena a key step has been to establish absolute
continuity of measures �ð�Þ ¼

R
��ð�Þd� generated as averages of spectral measures ��

which correspond to selfadjoint operators, particularly to Schrödinger operators.
Using various versions of an argument known as Kotani’s trick it can be shown that
the continuous spectrum is absent in some models. Depending on the case, the
averaging parameter � could be a boundary condition, a coupling constant in
a family H0 þ �W or number related to a shift of the potential. See [6,7,9,10,12,13].
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Consider for example a family of self-adjoint operators L�ðqÞ in L2ð0,1Þ generated
by the differential expression

lu ¼ �u00 þ qðxÞu

and the boundary condition

uð0Þ cos � � u0ð0Þ sin � ¼ 0, � 2 ½0,�Þ,

and let �� be the spectral measure corresponding to L�. The average �ð�Þ :¼
R �
0 ��ð�Þd�

is not only absolutely continuous with respect to Lebesgue measure, but is equal to it!
(See e.g. [5,11, Theorem 1]).

Using the absolute continuity of � the following can be proven (see e.g.
[2, Corollary 3.2]).

THEOREM 1 Let I be an open set in R. If for almost every E2 I, there exists a nontrivial
L2 solution of lu ¼ Eu, then

�cðL�Þ \ I ¼ �

for almost every � 2 ½0,�Þ, where �c denotes the continuous spectrum.

After realizing the usefulness of the absolute continuity of � it is natural to ask if
Lebesgue measure is absolutely continuous with respect to � and if this could be of
any use to understand spectral properties of the operators involved.

In this article, we give conditions which imply that Lebesgue measure and a properly
chosen average measure � have the same zero sets and apply this to prove stability
results concerning spectra, when potentials of half line Schrödinger operators are
shifted. In particular, if some spectral property holds for a set of positive Lebesgue
measure of shifts then the same property will hold for a set of positive Lebesgue
measure of other parameters, such as boundary conditions and local perturbations.

This will be a consequence of our main result Theorem 2. See for example Corollary 1
below.

In previous work [3] a similar approach was used to study local perturbations
with compact support. Here we shall consider situations where both shift and local
perturbations are present. In section 2 our main result is proven. The techniques rely
heavily on the Prüfer transform which is an important tool in this article. In section 3,
we show how more general results can be obtained and some applications to
�-singular and �-continuous spectrum. Some of the methods used have their origin in
[10] and [13].

We shall use the notation R
þ for the non-negative reals, i.e. R

þ
¼ fa2R=a � 0g.

2. Main results

For each ða, �Þ 2R
þ
� ½0,�Þ let us consider the self-adjoint operator La� in L2ð0,1Þ

generated by the differential expression

la ¼
�d2

dx2
þ VaðxÞ,
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where

VaðxÞ :¼
qðx� aÞ if x � a

0 0 � x < a

�

as follows:
La�u ¼ lau for u in the domain of La� given by

DðLa�Þ ¼
�
f2L2ð0,1Þ : f, f 0 locally absolutely continuous in ð0,1Þ,

la f2L2ð0,1Þ, fð0Þ cos � � f 0ð0Þ sin � ¼ 0, � 2 ½0,�Þ
�
:

We assume lu ¼ �u00 þ qðxÞu is in the limit point case at 1. The function qðxÞ is
local in L1.

If � and 	 are two measures we use the notation � �� 	 when � is absolutely
continuous with respect to 	, that is if 	ðAÞ ¼ 0 implies �ðAÞ ¼ 0. If � �� 	 and
	 �� � we say that the two measures are equivalent. We use j � j, to denote the
Lebesgue measure.

Let a2 > a1 > 0 and E0 > 0. For a Borel set A� ½E0,1Þ define

��ðAÞ :¼

Z a2

a1

�a�ðAÞda,

where �a� is the spectral function associated with the operator La�.

THEOREM 2

(i) ��ð�Þ ��j � j
(ii) If a2 � a1 � ð�=

ffiffiffiffiffiffi
E0

p
Þ then ��ð�Þ ��j � j.

Before we prove the theorem let us introduce notation and recall some results.
Consider real solutions u 6	 0 of lau ¼ Eu such that for fixed c2R

þ

uðcÞ ¼ sin �

u0ðcÞ ¼ cos �:

If we write the vector ðu0ðxÞ, uðxÞÞ for x > 0 in polar coordinates we obtain

uðxÞ ¼ rcðxÞ sin�cðxÞ

u0ðxÞ ¼ rcðxÞ cos�cðxÞ

where �cðx, �,E,VaÞ and rcðx, �,E,VaÞ are called the Prüfer phase and the Prüfer
amplitude of u, respectively.

We fix a unique value of �c by requiring �cðc, �,EÞ ¼ � and continuity in x. These
functions rc and �c are jointly continuous in x,E (use arguments similar to [15, Thm
2.1], [1, Thm Ch. 2.4], [4, Thm Ch. V.3]). This will be important in what follows.
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We shall need the next results

(a)

�a�ððE1,E2ÞÞ ¼ lim
b!1

1

�

Z E2

E1

r0ðb, �,E,VaÞ
�2 dE

if E1 and E2 are not discrete points of �a�. See [11, Thm 2], E1 < E2.
(b) For any a, x, �,E2R

1

�

Z �þ�

�

raðx,
,E,VaÞ
�2 d
 ¼ 1:

See [13, Corollary 12] and [14, Appendix B].
(c)

@�0
@x
¼ cos2 �0ðxÞ þ ðE� VaÞ sin

2 �0ðxÞ:

This follows from a straightforward calculation.

Proof of Theorem 2
We use an argument similar to the one used in [13] where (I) was proven for the case
of the whole line. Given any E1 < E2, 0 < E0 � E1 the measure �a� is continuous in
E1 and E2 for almost any a.

From (a) above we know that

�ðE1,E2Þ ¼

Z a2

a1

�a�ðE1,E2Þda ¼

Z a2

a1

lim
b!1

1

�

Z E2

E1

r0ðbþ a, �,E,VaÞ
�2 dE

� �
da ð1Þ

We shall forget for a while the limit which appears in the expression (1). Our aim is
to get first the estimate (5) below.

Since

r0
�
bþ a, �,E,Va

�
¼ r0

�
a, �,E, 0

�
ra
�
bþ a,�0ða, �,E, 0Þ,E,Va

�
¼ r0

�
a, �,E, 0

�
r0
�
b,�0ða, �,E, 0Þ,E, qðxÞ

�
ð2Þ

we obtain

Z a2

a1

1

�

Z E2

E1

�
r0ðbþ a, �,E,VaÞ

��2
dE

� �
da

¼

Z a2

a1

da
1

�

Z E2

E1

dE
	
r0
�
a, �,E, 0

��2
r0
�
b,�0ða, �,E, 0Þ,E, qðxÞ

��2
� �

1214 R. D. Rio and C. A. Martinez
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Since r0ða, �,E, 0Þ is uniformly bounded for ða,E Þ 2 ½a1, a2
 � ½E1,E2
 (use joint
continuity) and interchanging the order of the integrals, we get that

C1

Z E2

E1

dE

Z a2

a1

da r0
�
b,�0ða, �,E, 0Þ,E, qðxÞ

��2

�

Z a2

a1

1

�

Z E2

E1

�
r0ðbþ a, �,E,VaÞ

��2
dE

� �
da

� C2

Z E2

E1

dE

Z a2

a1

da r0
�
b,�0ða, �,E, 0Þ,E, qðxÞ

��2
ð3Þ

where we can choose, for example, C1 and C2 to be the sup, respectively the inf,
of r0ða, �,E, 0Þ when ða,E Þ 2 ½a1, a2
 � ½E1,E2
.

Now if we denote


ðaÞ :¼ �0ða, �,E, 0Þ

and change variables we obtain

Z a2

a1

da r0
�
b,
ðaÞ,E, qðxÞ

��2
¼

Z 
ða2Þ


ða1Þ

d



0ðaÞ
r0
�
b,
ðaÞ,E, qðxÞ

��2
:

Since

minf1,Eg � 
0ðaÞ � maxf1,Eg,

(see (c) aforementioned) and recalling that E2 ½E1,E2
 then

C3

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d
 �

Z a2

a1

da r0
�
b,
ðaÞ,E, qðxÞ

��2

� C4

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d
 ð4Þ

for suitable positive constants C3,C4.
From inequalities (3) and (4) we obtain

C5

Z E2

E1

dE

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d


� �
�

Z a2

a1

1

�

Z E2

E1

�
r0ðbþ a, �,E,VaÞ

��2
dE

� �
da

� C6

Z E2

E1

dE

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d


� �
ð5Þ

for some positive constants C5,C6.
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Proof of (I)
Splitting the interval ½
ða1Þ,
ða2Þ
 into intervals of length at most � yields by (b)

aforementioned

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d
 � �


ða2Þ � 
ða1Þ

�
þ 1

� �
,

therefore from the first inequality in (5) we get

C7ðE2 � E1Þ �

Z a2

a1

da
1

�

Z E2

E1

r0ðbþ a, �,E,VaÞ
�2 dE

� �
:

Applying Fatou’s lemma we obtain

C7ðE2 � E1Þ � ��ðE1,E2Þ:

Using countable additivity part (I) of the theorem follows for general Borel sets.

Proof of (II)
Let us look now for conditions on a1, a2 which imply 
ða2Þ � 
ða1Þ � �. Since in the

definition of 
 the potential zero was used, it is possible to calculate 
 explicitly.
Observe that uðxÞ :¼ sinð�þ

ffiffiffiffi
E
p

xÞ, where � :¼ arctanð
ffiffiffiffi
E
p

tan �Þ 2 ½0,�Þ, satisfies the
equation

�u00ðxÞ ¼ EuðxÞ

and the conditions

uð0Þ ¼ sin �

u0ð0Þ ¼ cos �:

We can then write


ðxÞ þ n� ¼ �0ðx, �,E, 0Þ þ n�

¼ arg
�
u0ðxÞ þ iuðxÞ

�
þ n�

¼ arg
� ffiffiffiffi

E
p

cosð�þ
ffiffiffiffi
E
p

xÞ þ i sinð�þ
ffiffiffiffi
E
p

xÞ
�
þ n�

¼ arg
� ffiffiffiffi

E
p

cosð�þ
ffiffiffiffi
E
p

xþ n�Þ þ i sinð�þ
ffiffiffiffi
E
p

xþ n�Þ
�

¼ 
 xþ
n�ffiffiffiffi
E
p

� �
:

Since 
(x) is increasing (see (c) aforementioned) then a2 � a1 � ð�=
ffiffiffiffi
E
p
Þ implies


ða2Þ � 
ða1Þ � �.

1216 R. D. Rio and C. A. Martinez
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Therefore using (b) we get

Z 
ða2Þ


ða1Þ

r0
�
b,
,E, qðxÞ

��2
d
 � � if a2 � a1 �

�ffiffiffiffi
E
p :

We can conclude that

Z a2

a1

1

�

Z E2

E1

r0ðbþ a, �,E,VaÞ
�2 dE

� �
da � C8ðE2 � E1Þ if a2 � a1 �

�ffiffiffiffiffiffi
E0

p :

To be able to consider the limit which appears in (1) we shall bound

~FbðaÞ :¼

Z E2

E1

r0ðbþ a, �,E,VaÞ
�2 dE

for every b > 0 and apply the Lebesgue-dominated convergence theorem. Observe that
using the decomposition (2) it is enough to bound

FbðaÞ ¼

Z E2

E1

r0
�
b,
ðaÞ,E, qðxÞ

��2
dE:

From Lemma 1 of [11] we know that

FbðaÞ ¼

Z �

0

�b

ðaÞ�ðE1,E2Þd�

where �b

� is the spectral measure associated with the regular problem in ½0, b
 with

boundary conditions

uð0Þ cos
� u0ð0Þ sin
 ¼ 0

uðbÞ cos � � u0ðbÞ sin � ¼ 0:

In the same article [11] it is observed (see proof of Corollary 3) that these measures
are uniformly bounded in b,
, �. Hence the boundedness of F follows. Therefore

��ðE1,E2Þ � C8ðE2 � E1Þ

and using countable additivity we get (II) for general Borel sets. g

COROLLARY 1 Let I :¼ ðE1,E2Þ �R
þ open and define La� as above. For any a2R

þ, the
operator La� has singular continuous spectrum in I for a set of positive Lebesgue measure
of �’s, if and only if for any � 2 ½0,�Þ,La� has singular continuous spectrum in I for a set B
of a’s of positive Lebesgue measure.

Moreover


B \ ½a1, a2


 > 0 if a2 � a1 �

�ffiffiffiffiffiffi
E0

p where 0 < E0 < E1:

Sturm–Liouville operators in the half axis with shifted potentials 1217
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Proof )) Let S be the set of points E for which there are subordinate solutions
of lau ¼ Eu which are not in L2. It is known that this set is a support of the singular
continuous part of La� and it does not depend on a and �. Since �a�ðS \ I Þ > 0 for
a set of positive measure in � by hypothesis, using equality

jS \ Ij ¼

Z �

0

�a�ðS \ I Þd�

we deduce jS \ Ij > 0. This implies using Theorem 2 (II) that ��ðS \ I Þ > 0 for any � if
a2 � a1 � ð�=

ffiffiffiffiffiffi
E0

p
Þ. From here we know �a�ðS \ I Þ > 0 for a2B where B satisfies



B \ ½a1, a2


 > 0

() Assume La� has singular continuous spectrum in I for a set B of a’s of positive
Lebesgue measure. Then �a�ðS \ IÞ > 0 for a2B and

Z
B

�a�ðS \ I Þda > 0:

Therefore there exists an interval J ¼ ½a1, a2
 such that

Z
J

�a�ðS \ I Þda �

Z
B\J

�a�ðS \ I Þda > 0:

Using Theorem 2 (I) we obtain jS \ Ij > 0 and therefore

Z �

0

�a�ðS \ I Þd� ¼ jS \ Ij > 0

for every fixed a. Therefore La� has singular continuous spectrum in I for a set
of positive Lebesgue measure in �. g

Remark If instead of taking the support S as above we take the set P which
corresponds to subordinate solutions which are in L2 we get the same result for the
pure point part and taking P [ S, we obtain the result for the singular part of La�.

3. Generalizations

Recall the construction of La� given in section 2 and choose qðxÞ ¼ VðxÞ þ �WðxÞ
where we assume WðxÞ > 0 for a.e. x2 ½0, c
 and WðxÞ ¼ 0 for every x 6 2 ½0, c
. The
corresponding operator and spectral function will be denoted by La�� and �a��
respectively. Fixing two of the three parameters a, �, � we define lines in
R
þ
�R� ½0,�Þ as follows

l ¼
�
ða, �, �Þ 2R

þ
� R� ½0,�Þ=two parameters are fixed. In case ða, �Þ

are fixed, set a ¼ 0
�
:

1218 R. D. Rio and C. A. Martinez
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The set of all lines defined in this way will be denoted byM. Now consider the set
P,P�M defined in the following way

P ¼
�
l2M=9 B� l, jBj > 0 such that �ðLa, �, �Þ \ I 6¼ � for ða, �, �Þ 2B

�
:

Here j � j denotes the one-dimensional Lebesgue measure and � ¼ �sc, �pp or �s
where, as usual, �sc, �pp, �s denote the singular continuous, pure point, and singular
spectrum respectively.

THEOREM 3

P ¼M or P ¼ �:

Proof If I is open we know that

�ðLa, �, �Þ \ I 6¼ �() �a,�, �ðA \ IÞ > 0 ð6Þ

where A ¼ S,P or S [ P, as defined in Corollary 1 and the Remark following it,
depending on whether � is �sc, �pp or �s. See for example [2, Corollary 2.8]. On the
other hand we know

j � j �

Z �2

�1

�0��ð�Þd� �

Z a2

a1

�a��ð�Þda �

Z �

0

�a��ð�Þd� ð7Þ

where � denotes equivalence of measures (two measures are equivalent if they have
the same sets of measure zero), if we take �2 � �1, a2 � a1 large enough. If not, then
the measures defined as averages are just absolutely continuous with respect to
Lebesgue measure.

The first equivalence is the main result in [3], the second is Theorem 2 above, and the
third goes back to [5].

The theorem then follows from (6) and (7).
Let us for example fix a ¼ 0, � ¼ �0 and let � vary in R. Assume there is a set B�R

of positive Lebesgue measure such that for �2B

�ðL0, �, �0Þ \ I 6¼ �:

In other words, assume that the line fð0, �, �0Þ=�2Rg is in P. Then we know by (6),
that �0, �, �0 ðA \ I Þ > 0 for �2B. Using that

R �2
�1
�0��0 ð�Þd� �� j � j (with no restrictions

on the length �2 � �1) it follows that jA \ Ij > 0 and from (7) we obtain

�ðLa,�, �Þ \ I 6¼ �

for a set of a’s of positive measure. The other cases are proven analogously. g

In the case � ¼ �pp, we can choose

qðxÞ ¼ VðxÞ þ �WðxÞ þUðxÞ
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where U is locally L1 and

Z
jUðxÞjeAjxj dx <1 for all A > 0:

Using [8, Corollary 1.8], Theorem 3 can be proven in this case too.

PROPOSITION 1 Let I be an open interval I� ½E0,1Þ, E0 > 0 and define

B :¼ a2R
þ=�ðLa�0�0 Þ \ I 6¼ �

� �
:

If jBj > 0 then

jB \ ½a1, a2
j > 0

wherever a2 � a1 � ð�=
ffiffiffiffiffiffi
E0

p
Þ. In particular B is unbounded.

Proof From (6), if a2B then �a�0�0ðA \ I Þ > 0 and 0 <
R a2
a1
�a�0�0 ðA \ I Þda for some

a1 < a2 if jBj > 0.
From Theorem 2(I) it follows jA \ Ij > 0, and taking a1 < a2 such that

a2 � a1 � ð�=
ffiffiffiffiffiffi
E0

p
Þ then from Theorem 2(II) we get

Z a2

a1

�a�0�0 ðA \ I Þda > 0

and therefore jB \ ½a1, a2
j > 0 using (6) again. g

Similar results can be obtained for the �-continuous and �-singular spectrum. Recall
that for �2 ½0, 1
 the �-dimensional Hausdorff measure is defined for Borel sets A by

h�ðAÞ 	 lim
�!0

inf
�-covers

X1
v¼1

jbvj
�,

where a �-cover is a countable collection of intervals each, at most, of length � so
A� [�v¼1 bv.

Given �2 ½0, 1
 we define a measure � to be �-continuous ð�cÞ if �ðSÞ ¼ 0 for any set
S with h�ðSÞ ¼ 0 and �-singular ð�sÞ if it is supported on a set of S with h�ðSÞ ¼ 0.
For every such � and any measure �, one can uniquely decompose � ¼ ��c þ ��s

with ��c�-continuous and ��s,�-singular.
Denote � :¼ �a��. It is possible to find sets A� and B� such that

d��c ¼ d�ðA� \ :Þ

d�sc ¼ d�ðB� \ :Þ

and it happens that A� and B� are independent of �, a and �. See [8] and references
therein.
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Using the same reasoning as above one can prove Theorem 3 for the �-singular and
�-continuous part of the spectral measure. We get for example

THEOREM 4 If ��ca�0�0 ðI Þ > 0 for a2B where I is an open interval, jBj > 0 and �0, �0 are
fixed then ��ca0�0�ðI Þ > 0 for � 2 ~B, j ~Bj > 0 for any a0, �0 fixed.
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