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Abstract

We give conditions which imply equivalence of the Lebesgue measure with respect to a measure μ

generated as an average of spectral measures corresponding to Sturm–Liouville operators in the half axis.
We apply this to prove that some spectral properties of these operators hold for large sets of boundary
conditions if and only if they hold for large sets of positive local perturbations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A key step in important results concerning localization phenomena has been to establish ab-
solute continuity of measures μ(·) := ∫

ρλ(·) dλ generated as averages of spectral measures ρλ

which correspond to self-adjoint operators.
Let us for example consider a family of self-adjoint operators Lθ(q) in L2(0,∞) generated

by the differential expression

lu = −u′′ + q(x)u
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and the boundary condition

u(0) cos θ − u′(0) sin θ = 0, θ ∈ [0,π),

and let ρθ be the spectral measure corresponding to Lθ . The average μ(·) := ∫ π

0 ρθ (·) dθ is not
only absolutely continuous with respect to Lebesgue measure, but is equal to it! (See e.g. [9,
Theorem 1].)

Using the absolute continuity of μ the following can be proven (see e.g. [4, Corollary 3.2]).

Theorem 1. If for almost every E ∈ I , I ⊂ R, there exists a nontrivial L2 solution of lu = Eu,
then

σc(Lθ ) ∩ I = ∅
for almost every θ ∈ [0,π), where σc denotes the continuous spectrum.

For a survey of other localization results related to the absolute continuity of averages as μ

see [12].
In this paper we give conditions which imply that Lebesgue measure and a properly chosen

average measure μ have the same zero sets and apply this to understand some aspects of the spec-
tral theory of Sturm–Liouville operators with local perturbations. In particular, if some spectral
property holds for a set of positive Lebesgue measure in the boundary conditions we can show
that this property holds for a set of positive measure of local perturbations leaving any boundary
condition fixed. This will be a consequence of our main result Theorem 3 below. In Section 2
our main results are proven. The techniques used rely heavily on the Prüfer transform which
is a very useful tool in this paper. In Section 3 we show consequences of the previous results,
some applications to α-singular and α-continuous spectrum are given and an open question is
presented. Some of the methods we used in this paper have their origin in [7].

2. Main results

For each (λ, θ) ∈ R × [0,π) let us consider the self-adjoint operator Lλθ in L2(0,∞) gener-
ated by the differential expression

lλu = − d2

dx2
+ V (x) + λW(x) (1)

as follows: Lλ,θu := lλu for u in the domain of Lλθ given by

D(Lλθ ) = {
f ∈ L2(0,∞): f,f ′ locally absolutely continuous in (0,∞),

lλf ∈ L2(0,∞), f (0) cos θ − f ′(0) sin θ = 0, θ ∈ [0,π)
}
.

We assume Lλθ is regular at 0 and the limit point case holds at ∞. See for these concepts [2]. The
functions V and W are real-valued and locally in L1. We assume W(x) > 0 for a.e. x ∈ [0, c]
and W(x) = 0 for every x /∈ [0, c].

Denote by ρθ
λ the spectral function of the operator Lλθ .

Using the same differential expression (1) we define a regular problem in the finite interval
[0, c] setting for θ ∈ [0,π) the boundary conditions{

u(0) cos θ − u′(0) sin θ = 0,

u(c) = 0.
(2)
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Definition 1. Fix E ∈ R and let us call λ(E) an eigenvalue if there is a nontrivial solution u of
lλu = Eu which satisfies the conditions (2).

The following result is due to C. Sturm and J. Liouville [13]. For more recent references see
for example [2, Theorem 2.1, Chapter 8, p. 212], [5, Chapter XI, p. 337], [14, Theorem 13.2],
[1, Theorems 8.4.5 and 8.4.6].

Theorem 2. There exists a monotonous decreasing sequence of eigenvalues λ(0) > λ(1) >

λ(2) > · · · such that λ(n) → −∞ if n → ∞.

If μ and ν are two measures we use the notation μ � ν when μ is absolutely continuous
with respect to ν, that is if ν(A) = 0 implies μ(A) = 0. If μ � ν and ν � μ we say that the two
measures are equivalent. We use | · | to denote the Lebesgue measure.

Let A be a Borel set A ⊂ (E1,E2) and define a measure μθ as follows:

μθ(A) :=
λ2∫

λ1

ρθ
λ(A)dλ.

The next result gives conditions which imply equivalence between μθ and | · |.

Theorem 3.

(I) If λ1 � λ(n+1)(E1) < λ(n)(E2) � λ2 where λ(n) are eigenvalues of the regular problem in
[0, c] mentioned in previous theorem then | · | � μθ .

(II) If λ1 � λ2 then μθ � | · |.

Before we prove the theorem let us introduce notation and recall some results.
Consider real solutions u 
≡ 0 of lλu = Eu such that for fixed a ∈ R,

u(a) = sin θ,

u′(a) = cos θ.

If we write the vector (u′(x), u(x)) in polar coordinates we obtain

u(x) = ra(x) sinφa(x),

u′(x) = ra(x) cosφa(x),

where φa(x, θ,E,λ) and ra(x, θ,E,λ) are called the Prüfer phase and the Prüfer amplitude of u.
We fix a unique value of φa by requiring φa(a, θ,E,λ) = θ and continuity in x. These func-

tions ra and φa are jointly continuous in x,E and λ (use arguments similar to [14, Theorem 2.1],
[2, Theorem, Chapter 2.4], [5, Theorem, Chapter V.3]). This will be very important in what fol-
lows.

We shall need the next results

(a) ρθ
λ

(
(E1,E2)

) = lim
b→∞

1

π

E2∫
E1

r0(b, θ,E,λ)−2 dE

if E1 and E2 are not discrete points of ρθ
λ . See [9, Theorem 2].
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(b) (i) (∂λφa)(x,λ) = − 1

ra(x,λ)2

x∫
a

W(t)ra(t, λ)2 sin2 φa(t, λ) dt,

(ii) (∂Eφa)(x,E) = 1

ra(x,λ)2

x∫
a

ra(t,E)2 sin2 φa(t,E)dt.

See [11, Appendix B].
(c) For any a, x, θ,E ∈ R,

1

π

θ+π∫
θ

ra(x,β,E)−2 dβ = 1.

See [10, Corollary 12] and [11, Appendix B].
(d) For the Prüfer phase φa of a solution of lλu = Eu we have

φa(p,λ) → ∞ as λ → −∞
for any point p ∈ suppW (see [2, formula (2.5) in the proof of Theorem 2.1, p. 212] or [14,
Theorem 13.2, part (c)]).

Proof of Theorem 3. We use an argument similar to the one used in [11, Lemma 5.10] where
(II) was proven for the case of the whole line. Given any E1 < E2, the measure ρθ

λ is continuous
in E1 and E2 for almost any λ.

From (a) we know that

μθ

(
(E1,E2)

) =
λ2∫

λ1

ρθ
λ

(
(E1,E2)

)
dλ =

λ2∫
λ1

[
lim

b→∞
1

π

E2∫
E1

r0(b, θ,E,λ)−2 dE

]
dλ. (3)

Let b > c > 0 where c = supS and S = {x: W(x) 
= 0} = suppW .
Let us estimate

λ2∫
λ1

1

π

[ E2∫
E1

(
r0(b, θ,E,λ)

)−2
dE

]
dλ.

Using Fubini we can interchange integrals and from the equality

r0(b, θ,E,λ)−2 = r0(c, θ,E,λ)−2rc
(
b,φ0(c, θ,E,λ),E

)−2

and the fact that r0 is jointly continuous in E and λ and strictly positive we get

1

π
sup

E∈[E1,E2]
λ∈[λ1,λ2]

{
r0(c, θ,E,λ)−2} E2∫

E1

dE

[ λ2∫
λ1

rc
(
b,φ0(c, θ,E,λ),E

)−2
dλ

]

�
λ2∫

1

π

[ E2∫ (
r0(b, θ,E,λ)

)−2
dE

]
dλ = 1

π

E2∫ [ λ2∫ [
r0(b, θ,E,λ)

]−2
dλ

]
dE
λ1 E1 E1 λ1



R. del Rio, O. Tchebotareva / J. Math. Anal. Appl. 329 (2007) 557–566 561
� 1

π
inf

E∈[E1,E2]
λ∈[λ1,λ2]

{
r0(c, θ,E,λ)−2} E2∫

E1

dE

[ λ2∫
λ1

rc
(
b,φ0(c, θ,E,λ),E

)−2
dλ

]
.

Define β(λ) := φ0(c, θ,E,λ).
From (b)(i) we know that β ′(λ) < 0. Changing variables we obtain

λ2∫
λ1

rc
(
b,φ0(λ),E

)−2
dλ =

β(λ2)∫
β(λ1)

rc(b,β,E)−2

β ′(λ)
dβ =

β(λ1)∫
β(λ2)

1

|β ′(λ)| rc(b,β,E)−2 dβ.

Using (b)(i) and the fact that r0 is jointly continuous in λ and E we obtain

∣∣β ′(λ)
∣∣ =

c∫
0

W(t)
r2

0 (t, θ,E,λ) sin2 φ0(t, θ,E,λ)dt

r2
0 (c, θ,E,λ)

�
c∫

0

W(t)
r2

0 (t, θ,E,λ)dt

r2
0 (c, θ,E,λ)

� sup
t∈[0,c]

E∈[E1,E2]
λ∈[λ1,λ2]

{
r2

0 (t, θ,E,λ)

r2
0 (c, θ,E,λ)

} c∫
0

W(t) dt

�
supt,E,λ r2

0 (t, θ,E,λ)

infE,λ r2
0 (c, θ,E,λ)

c∫
0

W(t) dt

therefore

1

|β ′(λ)| �
inf r2

0 (c, θ,E,λ)

sup r2
0 (t, θ,E,λ)

∫ c

0 W(t) dt
=: K.

On the other hand we have that

r2
0 (t, θ,E,λ)

r2
0 (c, θ,E,λ)

� C > 0

for t ∈ [0, c] locally uniformly in E,λ and, since sinφ0(·, θ,E,λ) has only isolated zeros,

c∫
0

W(t) sin2 φ0(t, θ,E,λ)dt > 0.

By continuity in E and λ we arrive at

inf
E∈[E1,E2]
λ∈[λ1,λ2]

c∫
0

W(t) sin2 φ0(t, θ,E,λ)dt > 0

and

1
′ � C.
|β (λ)|
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Altogether we get

C

β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ �
λ2∫

λ1

rc
(
b,φ0(λ),E

)−2
dλ =

β(λ1)∫
β(λ2)

rc(b,β,E)−2

|β ′(λ)| dβ

� K

β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ

hence

C̃

E2∫
E1

dE

[ β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ

]
�

λ2∫
λ1

1

π

[ E2∫
E1

(
r0(b, θ,E,λ)

)−2
dE

]
dλ

= 1

π

E2∫
E1

[ λ2∫
λ1

r0(b, θ,E,λ)−2 dλ

]
dE

� c̃

E2∫
E1

dE

[ β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ

]
,

where

c̃ = 1

π
inf

E∈[E1,E2]
λ∈[λ1,λ2]

{
r0(b, θ,E,λ)−2}K and C̃ = 1

π
sup

E∈[E1,E2]
λ∈[λ1,λ2]

{
r0(b, θ,E,λ)−2}C.

In order to handle the limit that appears in (3) we would like to get estimates for

β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ

which are independent of b. To accomplish this we look for conditions on λ1, λ2 which guarantee
that β(λ1) − β(λ2) � π and then apply result (c) mentioned above.

To prove (I) we need an estimate from below. From (b)(i), (ii) and (d) we know that β(λ) =
φ0(c, θ,E,λ) is decreasing in λ, increasing in E and β(λ) → ∞ if λ → −∞ or E → ∞. More-
over, λ is an eigenvalue of the problem with boundary conditions (2) if and only if β(λ) = mπ .
For fixed E choose two consecutive eigenvalues λ(n), λ(n+1) of this problem and take

λ2 > λ(n) > λ(n+1) > λ1

then we will have β(λ1) − β(λ2) � π . Now since β is increasing in E we can choose
λ2 � λ(n)(E2) > λ(n+1)(E1) > λ1 and we get

β(λ1,E) − β(λ2,E) � π for every E ∈ [E1,E2],
then we can conclude

λ2∫
1

π

[ E2∫ (
r0(b, θ,E,λ)

)−2
dE

]
dλ � πc̃(E2 − E1).
λ1 E1
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To get the estimate from above that we need to prove (II) it is not necessary to impose extra
conditions on λ1, λ2. We split the interval [β(λ2), β(λ1)] into intervals of length at most π and
apply (c),

β(λ1)∫
β(λ2)

rc(b,β,E)−2 dβ � π

(
β(λ1) − β(λ2)

π
+ 1

)
.

Remember that β(λ) = φ0(c, θ,E,λ) is bounded locally uniformly in E, then
λ2∫

λ1

1

π

[ E2∫
E1

(
r0(b, θ,E,λ)

)−2
dE

]
dλ � πĈ(E2 − E1),

where

Ĉ = (
β(λ1) − β(λ2) + π

)
C̃(E2 − E1).

Since 1
π

∫ E2
E1

(r0(b, θ,E,λ))−2 dE is bounded uniformly for every b > c and λ ∈ [λ1, λ2] (use
[8, Lemma 1.1, Chapter 2] and joint continuity) we can apply the Lebesgue theorem of dominated
convergence to obtain

πĈ(E2 − E1) � μθ

(
(E1,E2)

)
� πc̃(E2 − E1).

Using countable additivity the theorem follows for general Borel set A. �
The following result is a consequence of Theorem 3.

Corollary 1. Let I := (E1,E2) ⊂ R be open and define Lλθ as above. For any λ ∈ R, the op-
erator Lλθ has singular continuous spectrum in I for a set of positive Lebesgue measure of θ ’s
if and only if for any θ ∈ [0,π),Lλθ has singular continuous spectrum in I for a set B of λ’s
of positive Lebesgue measure. Moreover, if λ(n)(E) are the eigenvalues of (1) with boundary
conditions (2), then∣∣B ∩ [

λ(n+1)(E1), λ
(n)(E2)

]∣∣ > 0 for every n � 0.

Proof. (⇒) Let S be the set of points E for which there are subordinate solutions of lλu = Eu

which are not in L2. It is known that this set is a support of the singular continuous part of Lλθ

and it does not depend on λ and θ (see [6]). Since ρθ
λ(S ∩ I ) > 0 for a set of positive measure in

θ by hypothesis using equality (see e.g. [9])

|S ∩ I | =
π∫

0

ρθ
λ(S ∩ I ) dθ

we deduce |S ∩ I | > 0. This implies using Theorem 3(I) that μθ(S ∩ I ) > 0 for any θ . From here
we know ρθ

λ(S ∩ I ) > 0 for λ ∈ B and∣∣B ∩ [
λ(n+1)(E1), λ

(n)(E2)
]∣∣ > 0.

(⇐) Assume Lλθ has singular continuous spectrum in I for a set B of λ’s of positive Lebesgue
measure. Then ρθ

λ(S ∩ I ) > 0 for λ ∈ B and∫
ρθ

λ(S ∩ I ) dλ > 0.
B
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Therefore there exists an interval J such that∫
J

ρθ
λ(S ∩ I ) dλ �

∫
B∩J

ρθ
λ(S ∩ I ) dλ > 0.

Using Theorem 3(II) we obtain |S ∩ I | > 0 and therefore

π∫
0

ρθ
λ(S ∩ I ) dθ = |S ∩ I | > 0

for every fixed λ. Therefore Lλθ has singular continuous spectrum in I for a set of positive
Lebesgue measure in θ . �

If instead of taking the support S as above we take the set P of subordinate solutions which
are in L2 we get the same result for the pure point part and taking P ∪ S we obtain the result for
the singular part of Lλθ .

3. Consequences and remarks

For the pure point part of the spectrum the following result can be proven. Define Lλθ (U) as
it was done in Section 2 but using instead the differential expression

lλ(U) = − d2

dx2
+ V (x) + U(x) + λW(x),

where we assume V is bounded from below (Lλθ = Lλθ (U) if U ≡ 0). Using Corollary 1.8 of
[6] the following version of Corollary 1 above can be proven:

Proposition 1. For any λ ∈ R the operator Lλθ has point spectrum in I for a set of positive
Lebesgue measure in θ ’s if and only if for any θ the operator Lλθ (U) has point spectrum in I

for a set of λ’s of positive Lebesgue measure. We assume the function U(x) is locally in L1 and∫ ∣∣U(x)
∣∣eA|x| dx < ∞

for all A > 0.

We recall the following related result which was proven in [4].

Corollary 2. Let I ⊂ R be open. If Lθ(q) has singular continuous spectrum in I for a set of
positive measure of θ ’s, the same is true for q + v where v is a perturbation of compact support
(v does not need to be positive).

The next proposition states that, in a way, the roles of θ and v in Corollary 2 can be exchanged.
The proof follows directly from Corollary 1.

Proposition 2. Let θ0, θ1 ∈ [0,π). The operator Lλθ0 has singular continuous spectrum in I for
a set of positive Lebesgue measure in λ if and only if Lλθ1 has singular continuous spectrum in
I for a set of positive measure in λ.
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Similar results can be proven for the α-continuous and α-singular spectrum. Recall that for
α ∈ (0,1) the α-dimensional Hausdorff measure is defined for Borel sets A by

hα(A) ≡ lim
δ→0

inf
δ-covers

∞∑
v=1

|bv|α,

where a δ-cover is a countable collection of intervals each of length at most δ so A ⊂ ⋃∞
v=1 bv .

Given α ∈ [0,1] we define a measure μ to be α-continuous (αc) if μ(S) = 0 for any set S with
hα(S) = 0 and α-singular (αs) if it is supported on a set S with hα(S) = 0. For every such α and
any measure μ, one can uniquely decompose μ = μαc + μαs with μαc α-continuous and μαs ,
α-singular.

Denote ρ := ρθ
λ . It is possible to find sets Aα and Bα such that

dραc = dρ(Aα ∩ .),

dρsc = dρ(Bα ∩ .)

and it happens that Aα and Bα are independent of θ and λ. See [6] and references therein.
Using the same reasoning as above one can prove Proposition 2 and Corollary 1 for α-singular

and α-continuous instead of singular continuous spectrum.

Remark. Define B to be the set of λ’s such that Lλθ has singular continuous (point, singular,
α-continuous, α-singular) spectrum in an interval I = (E1,E2). From the results above, it fol-
lows in particular that it is not possible to have |B| > 0 and B ⊂ J where J is a finite interval,
since |B ∩ [λ(n+1)(E1), λ

(n)(E2)]| > 0 for every n � 0 and λ(n) → −∞ if n → ∞. It remains to
answer this for θ . We believe it is possible to have a set T of θ ’s such that |T | > 0 and T ⊂ J

where J is an interval properly contained in [0,π). Our belief is based on the following result
[3, Theorem 1.2] with regard to abstract rank one perturbations. Let A be a self-adjoint operator
with a cyclic vector ϕ. Denote by Aλ the perturbations of A:

Aλ = A + λ(·, ϕ)ϕ, λ ∈ R.

Theorem 4. For any measurable set B ⊂ R there exists a family of rank one perturbations
{Aλ}λ∈R such that Aλ has dense absolutely continuous and dense singular spectrum for almost
every λ ∈ B and dense absolutely continuous (but no singular) spectrum for almost every λ /∈ B .
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