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In this paper A = B+V represents a self-adjoint operator acting on a Hilbert space H . We set a general theoric
framework and obtain several results for singular perturbations of A of the type Aβ = A+ βτ∗τ for τ a functional
defined in a subspace of H . In particular we apply these results to Hβ = −∆+V +β |δ 〉〈δ | where δ is the singular
perturbation given by δ (ϕ) =

∫
S ϕ dσ where S is a suitable hypersurface in Rn.

Using the fact that the singular perturbation τ∗τ is a sort of rank one perturbation of the operator A, it is possible
to prove the invariance of the essential spectrum of A under these singular perturbations. The main idea is to apply an
adequate Krein’s formula in this singular framework.

As an additional result, we found the corresponding relationship between the Green’s functions associated to the
operators H0 = ∆+V and Hβ and we give a result about the existence of pure point spectrum (eigenvalues) of Hβ . Also
we study the case β goes to infinity.

I. INTRODUCTION

This article deals with singular perturbations of a self-
adjoint operator A : H →H , that is, Aβ = A+βτ∗τ where
τ is a continuous functional defined on a linear subspace of
the Hilbert space H . For τ continuous in H the problem be-
comes a classical rank one perturbation which has been fully
studied in the last decades. See for example1,2 ,3 and the bib-
liography cited there.

A concrete example is Hβ = H0 + β |δS〉〈δS| where H0 =

−∆+V (x) on the Hilbert space H = L2(Rn), and V (x) is
an adequate measurable real valued function defined on Rn.
Specifically, we shall consider Hβ , a singular perturbation of
H0, of the type

Hβ = H0 +β |δS〉〈δS| (1)

with S the boundary of a bounded Lipschitz domain Ω in Rn,
β is a real parameter. and

δS(ϕ) =
∫

S
ϕ dσ (2)

where dσ is the surface area element of the smooth surface
S. This is a generalization of the delta distribution δa in one
dimension, δa(φ) = φ(a), φ ∈C∞

0 .
For singular perturbations that is, perturbations of the type

δ -function in a point or the delta supported on a compact sur-
face we mention4. Some authors, see5, have characterized
the domain of these operators in term of an adequate bound-
ary conditions. Following this approach, we are able to re-
late it with a bounded operator in an adequate Sobolev space,
where the difference of the corresponding resolvents behave
as a true rank one operator, which allows us to formulate a
Krein’s identity in that context. We apply this identity for
proving a version of Weyl’s theorem for these kind of singular
perturbations. Moreover it allows us to define singular pertur-
bations in dimensions greater than one.

Also we mention5 where the authors study the case of
Schrödinger operators with δ and δ ′ potentials.

In6 the authors study the resonance phenomena for Hβ =
H0 + β |δ 〉〈δ |, where H0 = −∆ on the half line [0,∞) and δ

is a one point interaction. One expects a resonant behavior
when β is large. The operator Hβ converges in some sense to
an operator H∞ as β → ∞, which has embedded eigenvalues,
motivating the computations in Section 6.

Notations.
Throughout this paper, ∆ denotes the spatial Laplace operator,

∆ = ∑
n
i=1

∂ 2

∂x2
i

. Green’s function are denoted by: G0 , Gβ for

n ≥ 2 and for n = 1 we write g0 , gβ and g∞. The Sobolev
space H p(Rn) , 1 ≤ p < ∞ is defined as the subset of func-
tions f ∈ L2(Rn) such that f and its weak derivatives up to
order p have a finite L2 norm.

Our main example is the Schrödinger operator H0 =−∆+
V (x) on L2(Rn) under a singular perturbation given by inter-
action on a hypersurface S as the one defined in (1). For this
reason, in all what follows we assume that the operator A is of
the form A = B+V , where B and V are self–adjoint operators
on H , with V bounded relative to B and B ≥ 0. We write
H 2 = D(B) with norm

‖ψ‖2
2 = ‖ψ‖2 +‖Bψ‖2. (3)

with this ‖ · ‖2 norm H 2 becomes a Hilbert space with inner
product < u,v>2=< u,v>+<Bu,Bv>. We denote its dual,
the space of all linear bounded functional defined in H 2, by
H −2 = (H 2)∗. Also, H 1 denotes the domain of B1/2, with
norm

‖ψ‖2
1 = ‖ψ‖2 + 〈ψ,Bψ〉= ‖ψ‖2 +‖B1/2

ψ‖2 .

Notice that H 1, H 2 are linear subspaces of H .
In the case of the Schrödinger operator −∆ +V (x) on

L2(Rn), the spaces H 1, H 2 are just the Sobolev’s spaces
H 1(Rn) and H 2(Rn) respectively.

Next we consider a a natural way to regard singular rank
one perturbations of a self-adjoint operator A. If one writes
formally these perturbations as Aβ = A+β 〈ϕ, ·〉ϕ where ϕ is
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a given functional, then we can think of Aβ as a self-adjoint
extension of the operator A restricted to the kernel of ϕ . In
section 2 this approach is explained.

Section 3 is dedicated to the construction of the singular
perturbed operator by using its corresponding quadratic form,

qβ (ϕ) =
∫
|∇ϕ(x)|2dx +

∫
V (x)|ϕ(x)|2dx + β

∣∣∣∣∫S
ϕ dσ

∣∣∣∣2 .
This quadratic form leads to the definition of a self–adjoint
operator Hβ on L2(Rn), including a description of its domain,
a representation of its resolvent and the corresponding associ-
ated Green’s function.

Also, in Section 4 we describe the Krein’s formula and the
corresponding Green’s functions to obtain a characterization
on Hβ as self-adjoint operator on L2(Rn).

In Section 5 we prove some spectral properties of Hβ .
Throughout Section 6 we will study the convergence of Hβ →
H∞ as β → ∞ and we focus on to study the spectral prop-
erties of the limit operator H∞. Finally, for completeness in
Section 6 we describe the limit operator H∞.

II. ON SINGULAR PERTURBATIONS. ABSTRACT
SETTING.

Let H be a Hilbert space with inner product 〈 , 〉 and the
corresponding norm ‖‖. For a self-adjoint operator A defined
in H , with domain D(A), we consider the perturbation Aα

given by

Aβ = A+β 〈ϕ, ·〉ϕ .

with β a real parameter. When ϕ ∈H , the operator Aβ is
just a self-adjoint rank one perturbation of A, with the same
domain D(A).

Instead, we consider

ϕ : D(A)−→ C,

but ϕ not in H , in which case we say that Aβ is a singular
perturbation of A .

Here, we also use 〈ϕ,x〉 to denote the action of ϕ on a vec-
tor x ∈D(A).

We call K = Kerϕ = {x ∈H : 〈ϕ,x〉= 0}. In some sense
we expect that Aβ restricted to D(A)∩K should coincide
with A. We write Â = A|D(A)∩K . To assure the existence of
self-adjoint extensions of Â, the following lemmas are needed,
see7 for more details.

Lemma II.1 Let D be a dense subspace of a Hilbert space
H . Suppose that ϕ : D −→C is discontinuous. Then Ker(ϕ)
is dense in H .

Proof. Since ϕ is discontinuous there exists a sequence
{xn} ⊂D such that ‖xn‖= 1 and |ϕ(xn)| →∞ as n→∞. Take
y ∈D and write

y = y− ϕ(y)
ϕ(xn)

xn +
ϕ(y)
ϕ(xn)

xn .

Suppose x ∈ Ker(ϕ)⊥, hence since y− ϕ(y)
ϕ(xn)

xn ∈ Ker(ϕ) we
have the inequality

|〈x,y〉|= |〈x, ϕ(y)
ϕ(xn)

xn〉| ≤ ‖x‖
|ϕ(y)|
|ϕ(xn)|

→ 0 as n→ ∞ .

Therefore D ⊂ Ker(ϕ)⊥⊥ = Ker(ϕ). Since D is dense H =

D ⊂ Ker(ϕ) and therefore Ker(ϕ) = H , so Ker(ϕ) is dense.
�

As a direct consequence of the above lemma we can set the
following result about self-adjoint extensions,

Lemma II.2 Consider A a self-adjoint operator acting on
H . Assume ϕ is discontinuous in D(A) with respect to the
norm of H . Let l : H → C be the functional defined as
l(ψ) := ϕ((A+ i)−1ψ). If l is continuous on H , then Â is
a densely defined symmetric operator with deficiency indices
(1,1).

Proof. From Lemma II.1 it follows that the domain D(Â) :=
Ker(ϕ) is dense. Now for γ ∈H , we have

l(γ) = 0⇔ (A+ i)−1
γ ∈ Ker(ϕ) = D(Â)⇔ γ ∈ Ran(Â+ i) .

Therefore

Ker(l) = Ran(Â+ i) (4)

and this set is closed by the continuity of l.
Now Ker(l) 6=H because if l(ψ) = 0, for all ψ ∈H , from

(4) and the basic criterion for selfadjointness we conclude that
Â is selfadjoint and therefore Â = A. That would mean that
Ker(ϕ) = D(A) and therefore ϕ continuous in D(A) which is
a contradiction to the hypothesis. Since l is continuous and
linear, by Riesz’s lemma there exists h ∈H , h 6= 0, such that
〈h, ·〉= l(·).

Taking into account that Ran(Â+ i) is closed and therefore
equal to Ker((Â)∗− i)⊥, we have

{γ : 〈h,γ〉= 0}= Ker(l) = Ker((Â)∗− i)⊥ .

It follows that {ch : c ∈ C}= {γ : 〈h,γ〉= 0}⊥ = Ker((Â)∗−
i)). Therefore, dim(Ker((Â)∗ − i)) = 1. Since Â has
self-adjoint extensions, the deficiency indices are equal and
dim(Ker((Â)∗+ i)) = 1.

�

Lemma II.3 Assume that B, V are self-adjoint operators act-
ing on H with D(B)⊂D(V ). Consider A = B+V and sup-
pose that there exist positive constants a and b, with b < 1,
such that

‖V ψ‖ ≤ a‖ψ‖+b‖Bψ‖ , (5)

for all ψ ∈D(B). Then

(i) the operator V is A–bounded.

(ii) for all z ∈ C, ℑz 6= 0: V (A− z)−1 is bounded.
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Proof. By the Kato-Rellich’s Theorem condition (5) implies
that B +V is self-adjoint. Given ψ ∈ D(B) we have that
‖V ψ‖ ≤ a‖ψ‖+b‖Bψ‖ ≤ a‖ψ‖+b(‖Aψ‖+‖V ψ‖). Since
b < 1, we obtain at once that

‖V ψ‖ ≤ a
1−b

‖ψ‖+ b
1−b

‖Aψ‖ (6)

ending the proof of part (i).
Part (ii). Using (6), for any ψ ∈H one has that

‖V (A− z)−1
ψ‖ ≤ a

1−b
‖(A− z)−1

ψ‖+ b
1−b

‖A(A− z)−1
ψ‖ (7)

=
a

1−b
‖(A− z)−1

ψ‖+ b
1−b

‖(I + z(A− z)−1)ψ‖

≤ c‖ψ‖.

which proves (ii).
�

Consider a linear functional τ : H 1→ C. Thus if τ is con-
tinuous, that is |〈τ,ψ〉| ≤ c‖ψ‖1, then it can be identified with
an element of H −1, the dual of H 1. On the other hand, if re-
striction of τ to H 2 is continuous (|〈τ,ψ〉| ≤ c‖ψ‖2), then τ

belongs to H −2. We need to prove the following result which
we will use afterward.

Lemma II.4 Assume that A = B+V with B,V satisfying con-
ditions of Lemma II.3. Suppose that τ ∈H −2 (τ ∈H −1).
Then there exists a positive constant c such that for all ψ ∈H
and z complex with ℑz 6= 0 ,

|τ(A− z)−1
ψ| ≤ c‖ψ‖ . (8)

Proof. We observe that for all ψ ∈H we have that

B(A− z)−1 = (A−V )(A− z)−1

= (A− z+ z−V )(A− z)−1

= I + z(A− z)−1−V (A− z)−1 . (9)

By continuity of τ in H 2, there exists a positive constant c1
such that |τ(A− z)−1ψ|2 ≤ c1‖(A− z)−1ψ‖2

2, that is,

|τ(A− z)−1
ψ|2 ≤ c1‖(A− z)−1

ψ‖2 + c1‖B(A− z)−1
ψ‖2

Using that (A− z)−1 is bounded in H , the identity (9) to-
gether with (7) imply (8).

�
As a first application we can take Hβ u=−∆u+Vu+βτ∗τ u

with singular perturbation τ = δ ∈ H −1(Rn). A second
one will be the partial derivative of the delta, that is, Hβ u =

−∆u+Vu+βτ∗i τi u where τi(ϕ) =−
∫

S
∂ϕ

∂xi
dσ as an element

of H −2(Rn). Of course we need to prove that τ , τi are con-
tinuous on the corresponding spaces. All the details about
τ ∈H −1, τi ∈H −2 will be developed along the next sec-
tion.

III. SINGULAR PERTURBATIONS OF H0 =−∆+V

In Section II the existence of self-adjoint extensions of Â
was proved in a general abstract setting. In this section we
study the concrete example Hβ = −∆+V + βτ∗τ with V a
measurable real valued function defined on Rn. We use a dif-
ferent approach to establish the existence Hβ as a self-adjoint
operator. To this end we work with the quadratic form which
it allows us to identify the domain of the operator Hβ .

A. Examples of singular perturbations

Given a smooth compact surface S in Rn we define the lin-
ear functional τ as:

τ(ϕ) =
∫

S
ϕ dσ . (10)

Since S is compact, by the well known Trace’s Theorem (for
n > 1), see8, for ϕ ∈H 1(Rn), we obtain that

|τ(ϕ)| ≤ |S|1/2‖ϕ‖L2(S) ≤C|S|1/2‖ϕ‖H 1 (11)

which proves that τ : H 1(Rn) → C is continuous, that is,
τ ∈

(
H 1

)∗
(Rn) =H −1(Rn). The corresponding adjoint op-

erator τ∗ : C→H −1(Rn) is the bounded operator defined as
τ∗(z) = zτ .

Thus, τ∗τ : H 1(Rn)→H −1(Rn) and it is defined as

(τ∗τ)ϕ = τ(ϕ)τ = (
∫

S
ϕ dσ)τ .

Next, by using (11), we prove that τ∗τ is continuous on
H 1(Rn) since

‖τ∗τ(ϕ)‖H −1 = |τ(ϕ)|‖τ‖H −1 ≤C2|S|‖ϕ‖H 1 . (12)

In this way, |δS〉〈δS|= τ∗τ can be viewed as a bounded linear
operator H 1(Rn)→ H −1(Rn), that is, it represents a sin-
gular rank one operator acting on H 1(Rn) , with range the
subspace of dimension one generated by τ .

Similarly, for a fixed i = 1, . . . ,n we consider the sort of
partial derivative of δ defined as:

τi(ϕ) =−
∫

S

∂ϕ

∂xi
dσ . (13)

Replacing ϕ by ϕx in (11) we see that τi : H 2(Rn) −→ C
is continuous, so τi ∈ H −2(Rn). On the other hand, a di-
rect computation shows that its adjoint τ∗i : C −→H −2(Rn)
is given by τ∗i (z) = zτi. Moreover, τ∗i τi : H 2(Rn) −→
H −2(Rn) is also continuous and its range is the one dimen-
sional space generated by τi.

By choosing an adequate real valued potential V (x) in
L∞(Rn) or any V suitable (5) the Hamiltonian H0 = −∆+V
is an unbounded self-adjoint operator on the Hilbert space
L2(Rn), with domain the Sobolev space H 2(Rn). On the
other hand, it is actually a bounded operator when it is viewed
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from H 1(Rn) to H −1(Rn). Clearly, Hβ = H0+β τ∗τ is also
a bounded operator from H 1(Rn) to H −1(Rn).

In the following we will use some results about semi-
bounded quadratic form, see9, page 276 for details. Re-
mind that a quadratic form q(u,u) : Q(q)×Q(q) −→ C is
called semibounded if and only if tere exists a positive con-
stant M such that q(u,u) ≥ −M‖u‖2 for all u ∈ Q(q) and is
closed if the dense domain Q(q) is complete under the norm
‖u‖q =

(
q(u,u)+(M+1)‖u‖2

)1/2.
On the other hand, by the spectral theorem for a self-adjoint

operator A, A is unitary equivalent to a multiplication by x on
⊕nL2(R,dµn). In this way we associate to A a quadratic form
qA : D(

√
|A|)−→ C

qA(ϕ) =⊕n

∫
|x||ϕ(x)|2 dµn(x) .

Clearly, qA(ϕ,ψ) = 〈
√
|A|ϕ,

√
|A|ψ〉 and Q(qA) =D(

√
|A|).

The relationship between them is settled in the following
results (see9),

Theorem III.1 If q is a closed semibounded quadratic form
then there exists a unique self-adjoint operator A such that
q = qA.

As an application of the above theorem we define the
quadratic form in H 1(Rn) by

qβ (ϕ) =
∫
|∇ϕ(x)|2dx+

∫
V (x)|ϕ(x)|2(x)dx

+β

∣∣∣∣∫S
ϕ(x)dσ

∣∣∣∣2 (14)

for β ≥ 0. That is, the domain D(qβ )=H 1(Rn) for all β ≥ 0.
Assume that V is real valued measurable function and there

exists M > 0 such that V (x) ≥ −M for all x ∈ Rn. Then the
next inequality holds:

‖ϕ‖2
qβ

= qβ (u,u)+(M+1)‖u‖2

=
∫
|∇ϕ(x)|2 +

∫
V (x)|ϕ(x)|2dx+(M+1)

∫
|ϕ(x)|2dx

+β

∣∣∣∣∫S
ϕ(x)dσ

∣∣∣∣2
≥
∫
|∇ϕ(x)|2dx+

∫
|ϕ(x)|2dx≥ ‖ϕ‖2

1

So, it is enough to prove that the form qβ given by (14) is
closed.

Proposition III.1 The quadratic form qβ defined in (14) is
closed.

Proof. The assertion follows at once if we prove that H 1(Rn)
is a closed subset with the induced norm ‖ · ‖qβ

. Suppose that
the sequence {ϕn}n ⊂H 1(Rn) converges in the ‖ · ‖qβ

norm
to ψ ∈ L2(Rn). Then {ϕn}n es Cauchy with the norm ‖ · ‖qβ

.
By (15) we have that {ϕn}n es Cauchy with the norm ‖ · ‖1.
But H 1(Rn) is complete, so ψ ∈H 1(Rn), ending the proof.

Remark. Note that the quadratic form q̃β , which corresponds
to ∂δ

∂xi
,

q̃(ϕ) =
∫
|∇ϕ(x)|2 +

∫
V |ϕ(x)|2dx+β

∣∣∣∣∫S

∂ϕ

∂xi
(x)dx

∣∣∣∣2
with form domain H 2(Rn) is bounded below but it is not
closed.

It remains to describe the domain of Hβ acting on L2(Rn)
that we settle in the next result.

Theorem III.2 Assume that V is a real valued measurable
function, ∆-bounded and V (x) ≥ −M for x ∈ Rn. Let H0 =
−∆+V be the operator acting on H 1(Rn) and τ given by
(2). Then the singular perturbed operator,

Hβ = H0 +βτ
∗
τ , β ∈ R

is a self-adjoint unbounded operator with domain Dβ con-
tained in H 2(Rn−S)∩H 1(Rn).

Moreover, this unbounded self-adjoint operator, again
called Hβ , it satisfies that

(−∆+V +βτ
∗
τ)ϕ(x) = (−∆+V )ϕ(x) .

for all x /∈ S , ϕ ∈H 2(Rn−S).

Proof. By Theorem III.1 there exists a self–adjoint opera-
tor Hβ whose form is precisely qβ and its form domain is
H 1(Rn). Next, we give a precise characterization of this op-
erator and its domain.

Let us consider ϕ in the domain Dβ of the operator Hβ .
Then,

〈Hβ ϕ,v〉= Qβ (ϕ,v), (15)

for any v ∈H 1(Rn). Moreover, choosing a test function v ∈
C∞

0 (Rn), with support disjoint of the surface S, one has that
〈Hβ ϕ,v〉=

∫
∇ϕ ·∇v+V ϕv in the weak sense.

Using elliptic regularity we get that Hβ ϕ = −∆ϕ +V ϕ , in
the strong sense. In other words, if ϕ ∈ H 2(Rn − S) then
Hβ ϕ =−∆ϕ +V ϕ on Rn−S.

On the other hand, by choosing v ∈C∞
0 , such that v≡ 1 in a

neighborhood of S, we have

〈Hβ ϕ,v〉 =
∫ (

∇ϕ ·∇v+V ϕv
)

dx+β |S|
∫

S
ϕ. (16)

But,
∫

∇ϕ ·∇v =
∫

S ∇ϕ ·∇v +
∫
Rn−Ω

∇ϕ ·∇v. Then, it follows
that ϕ satisfies the boundary condition,∫

S
(∇ϕ+−∇ϕ−) ·N + β |S|

∫
S

ϕ = 0, (17)

where N is the outwards normal to Ω on the boundary S
ϕ±(x) := limt→±0 ϕ(x+ tN) for all x ∈ S. �
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IV. RESOLVENT IDENTITIES

In the previous sections it has been proved, under adequate
conditions on the operator A and the functional τ , that the op-
erator Aβ =A+βτ∗τ is well defined from H 1−→H −1 with
A = B+V . Moreover, it is continuous there. Our next step
is to study the existence of the inverse operator (Aβ − zI)−1,
z ∈ C ,ℑz 6= 0.

Similarly, if τ : H 2−→C is continuous then τ∗τ : H 2−→
H −2 is also continuous. Under these conditions in both cases
it follows that Aβ = A+βτ∗τ is well defined and continuous.
Let start by setting a trivial result,

Lemma IV.1 If z ∈ C, ℑz 6= 0 then for any β , (Aβ − z) is one
to one.

Proof. Consider u ∈H 1 such that (Aβ − z)u = 0. Then,

0 = 〈(Aβ − z)u,u〉= 〈u,Bu〉+ 〈Vu,u〉+β |τ(u)|2− z̄‖u‖2 .

Taking the imaginary part in the above identity and using that
B,V are self-adjoint operators we deduce that u = 0. The case
H 2 is similar. �

Lemma IV.2 (Krein’s Formula) Let us denote by Rβ (z) :=
(Aβ − z)−1. Assume that the unperturbed operator A satisfies
that (A− z)H 1 = H −1, z ∈ C, ℑz 6= 0. Then

Rβ (z) = R0(z)−
β

1+βτR0(z)τ∗
R0(z)τ∗τ R0(z) (18)

where R0(z) = (A− z)−1.

Proof. By Lemma IV.1 and the hypothesis (A− z)H 1 =
H −1 we have that (A− z) : H 1 −→H −1 is invertible with
inverse R0(z) : H −1 −→H 1. Clearly,

Rβ (z)−R0(z) =−βR0(z)τ∗τ Rβ (z) (19)

which makes sense in Ran(Aβ − z) which it is a subspace of
H −1. On the other hand, the range of Rβ (z) is a subspace
of H 1 for any β , this allows us to apply τ by the left in
(19), having that τRβ = τR0− βτR0τ∗τRβ . But, τR0(z)τ∗

is a complex number and 1+βτR0(z)τ∗ is not zero otherwise
τR0(z) = 0 and then τ is the zero functional. So,

τRβ =
1

1+βτR0(z)τ∗
τR0(z) .

By replacing the above equality in (19) we obtain identity
(18). �

As a consequence of the previous lemma we can extend
Krein’s formula to H −1 by the obvious manner, since R0(z)
has the property (A− z)H 1 = H −1.

Corollary IV.1 Let us define Rβ (z) by identity (18) in H −1.
Then (Aβ − z)Rβ = IH −1 .

Finally we summarize these results in the following theo-
rem

Theorem IV.1 Consider Aβ = A+ βτ∗τ with A self-adjoint
and (A− z)H 1 = H −1. Then, for any z ∈C, ℑz 6= 0 one has
that the operator (Aβ − z) : H 1 −→H −1 is a bijection and
its resolvent satisfies (18).

Notice that the above results are valid in H 1 subspace of H .
For the case H 2 see remark below.

Remark. If τ ∈ (H 2−H 0) with ℑz 6= 0 then (A− z)H 2 =
H 0 and (Aβ −z)H 2 =H 0+Gen< τ > where Gen< τ > is
the linear subspace generated by τ . Thus the resolvents R0(z),
Rβ are well defined in different subspaces of H −2. Notice
that R0(z) = Rβ in H 0.

We notice that the above results are true for suitable condi-
tions on the perturbation τ∗τ , for instance, continuity is one
of them. But, as we will show next, for the concrete example
H0 = −∆+V with singular perturbations of the type (10) or
(13) it is possible to be precise.

Let us consider H0 = −∆ +V and denote by G0(x,y;z)
the corresponding Green’s function associated to the equation
−∆+V . In other words, for f ∈ L2(Rn) it is well known that

u(x) =
∫
Rn

G0(x,y;z) f (y)dy

is the solution of (H0 − z)u = f with u ∈ H 2(Rn) that is,
u = R0(z) f .

We will see that the numeric factor τR0(z)τ∗ which ap-
pears in (18) can be computed explicitly if some informa-
tion is known about the free resolvent R0(z). We know that
R0(z)τ(x) =

∫
Rn G0(x,y;z) f (y)dy . So,

τR0(z)τ∗(ξ ) = ξ

∫
Rn

∫
S

G0(x,y;z) f (y)dSx dy .

Given f ∈H 1 with compact support

(Rβ (z) f )(x) = R0(z) f (x)− β

1+βτR0(z)τ∗
(R0(z)τ∗τR0(z) f )(x)

= R0(z) f (x)−
β

1+βτR0(z)τ∗

∫
G0(x,y : z)(τ∗τR0 f )(y)dy

Then f ∈H −1, R0 f ∈H 1 and

τR0 f =
∫

S
R0 f ∈ C , τ

∗
τR0(z) f =

∫
S

R0 f τ ∈H −1.

That is, we have proven the following result,

Proposition IV.1 Let H0 : H 1(Rn) → H −1(Rn) be a
bounded operator. Assume that G0 is the Green’s function
( or the kernel) of R0(z). Assume that Hβ = H0 + βττ∗ is a
singular rank one perturbation of H0. Then

Rβ (z) = R0(z)−κβ (z)R0τ
∗
τR0(z)

where κβ (z) =
β

1+β
∫

S
∫

S G0(x,y;z)dSx dSy
.
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As mentioned in the Introduction, one of the motivation
of this work is the study of dynamical resonances for singu-
lar Hamiltonians. The usual stationary theory characterizes
resonances as poles of a suitable continuation of the Hamil-
tonian’s resolvent. Proposition IV.1 says that the poles of
Rβ are exactly the poles of κβ (z), which are the roots of
1+β

∫
S
∫

S G0(x,y;z)dSx dSy.
The next corollary is a direct consequence of the above

proposition,

Corollary IV.2 Let Gβ be the corresponding Green’s function
associated to Hβ . Then

Gβ (z) = G0(z)−κβ (z)G0(z)

We already know that Rβ : H −1(Rn)→H 1(Rn) is well de-
fined. Next we characterize the L2 range of Rβ .

Theorem IV.2 Let Rβ : H −1(Rn)→H 1(Rn) be the resol-
vent of Hβ . Then

Rβ L2 = {ϕ ∈H 1 : ϕ ∈H 2(Rn−S) :∫
S

(
∂ϕ

∂ν+
− ∂ϕ

∂ν−

)
dS = β

∫
S

ϕ dS } .

Theorem IV.3 There exists a self-adjoint operator Hβ on
L2(Rn) with domain Dβ contained in H 1(Rn) such that
Rβ (z) = (Hβ − zI)−1 in L2(Rn).

V. SPECTRAL PROPERTIES OF Hβ

In this section we study some spectral properties of the op-
erator Hβ = H0 +β |δS〉〈δS|.

Our goal is to characterize the essential spectrum of Hβ and
to study the existence of eigenvalues of finite multiplicity for
Hβ . Regarding the essential spectrum we can not apply di-
rectly the Weyl’s theorem to Hβ , since the perturbation is not a
true compact self-adjoint operator. For the non-singular case,
that is , when the perturbation β |δS〉〈δS| is a genuine rank one
perturbation, the analysis of the spectrum for a perturbation of
a absolutely continuous operator is treated in detail in2.

In the next result we set some conditions to fix this problem.

Proposition V.1 Assume that H0 ≥ c1 and there exists a posi-
tive constant c such that H0+c≥ c+c1 > 0. Then σess(Hβ ) =
σess(H0).

Proof. By the assumptions H0 and Hβ are self-adjoint opera-
tors.

Let us call Rc,β = (Hβ + c)−1 for β ≥ 0. The choice of c
gives that Rc,β is a self-adjoint operator. By Krein identity,
Lemma 18

Rβ = R0−
β

1+β 〈δS,R0δS〉
R0|δS〉〈δS|R0 .

We observe that

(R0|δS〉〈δS|R0)ϕ = 〈δS,R0ϕ〉R0 δS = 〈R∗0 δS,ϕ〉R0 δS

= |R0 δS〉〈R0 δS|ϕ .

So, the operator 〈R0|δS〉〈δS|R0 is a rank one operator on
L2(Rn) since

(R0 δS)(x) =
∫
Rn

g0(x,y)δS(y)dy =
∫

S
g0(x,y)dσ(y) ∈ L2(Rn)

We conclude that Rβ −R0 is a rank one operator. So by Weyl’s
theorem σess(Rβ ) = σess(R0) and it follows that σess(Hβ ) =
σess(H0)

�
For example, for H0 = −∆ in L2(Rn) we can say that the

singular perturbation Hβ has no isolated eigenvalues of infi-
nite multiplicity.

As a consequence of the above results one has that

Proposition V.2 Suppose that V is a real valued potential on
L2(Rn) , bounded below and let H0 =−∆+V be a self-adjoint
operator on L2(Rn). Then Hβ = H0 +β |δS〉〈δS| has the same
essential spectrum of H0.

Next we will study the existence of isolated eigenvalues of
finite multiplicity for thr perturbed operator Hβ . We set Dβ

for the domain of Hβ .
Let us assume that the operator H0 = −∆ +V (x) has no

eigenvalues in an interval J. In the other hand, if E0 ∈ J is
an eigenvalue of Hβ = H0 + β |δ >< δ |, then there exists a
nontrivial ψ ∈ Dβ such that, Hβ ψ = E0ψ . But E0 is also a
generalized eigenvalue, since ψ ∈H 1 and

−∆ψ +V (x)ψ +β (
∫

S
ψ)δ = E0 ψ .

This identity is valid in the space H −1(Rn). We note that∫
S ψ 6= 0, otherwise E0 would be an eigenvalue of H0. There-

fore we have that δ belongs to the range of the operator
H0−E0 and ∫

S
ψ−β

∫
S

ψ

∫
S
(H0−E0)

−1
δ = 0

That is, β and E0 must satisfy the condition

1−β

∫
S
(H0−E0)

−1
δ = 0 . (20)

Theorem V.1 Assume that the operator H0 =−∆+V (x) has
no eigenvalues in an interval J. Suppose that E0 ∈ J is an
eigenvalue of Hβ = H0 + β |δS〉〈δS| for some β > 0. Then
identity (20) holds and

ψ = (H0−E0)
−1

δ (21)

is its corresponding eigenvector.
Conversely, if (20) is satisfied then E0 is an eigenvalue of

Hβ and ψ given in (21) is its corresponding eigenvector.

Proof. Since E0 is an eigenvalue then there exists ψ ∈D(Hβ )
such that

(H0−E0)ψ =−β 〈δ ,ψ〉δ . (22)
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Now, (H0 − E0) : H 1(Rn) → H −1(Rn) is one to one in
D(Hβ ) ⊂H 1(Rn) so (H0−E0)

−1δ makes sense. Then we
conclude that

ψ =−β 〈δ ,ψ〉(H0−E0)
−1

δ . (23)

Hence, 〈δ ,ψ〉 = −β 〈δ ,ψ〉〈δ ,(H0 − E0)
−1δ 〉. Clearly,

〈δ ,ψ〉 6= 0, otherwise by (22) E0 would be an eigenvalue of
H0. We conclude that (20) holds and (23) gives explicitly the
corresponding eigenvector ψ .

On the other hand, suppose that (20) holds and let ψ =
(H0−E0)

−1δ . Then 1+β 〈δ ,ψ〉= 0. Thus,

(Hβ −E0)ψ = (H0−E0)ψ +β 〈δ ,ψ〉δ
= (1+β 〈δ ,ψ〉)δ = 0

which proves the reciprocal. �

VI. THE LIMITING OPERATOR H∞. CASE n = 1

For dimension n = 1 we have an straightforward result.
That is, since g0 is the Green’s function associates to R0 then
by taking β → ∞ in Krein’s formula (18), we obtain that

R∞(z) = R0(z)−
1

g0(a,a;z)
g0(a,y;z)g0(x,a;z) .

We denote by g∞(x,y;z) = g0(x,y;z)− 1
g0(a,a)

g0(a,y)g0(x,a).
Using (18) it follows that g∞(a,y;z) = g∞(x,a;z) = 0.

Proposition VI.1 The function u(x) =
∫

∞

a g∞(x,y;z)ϕ(y)dy is
a solution of the boundary value problem (−∆u+V − z)u = ϕ , in [0,∞)

u(a) = 0
u(0) = 0

Furthermore, if the support of ϕ is contained on [0,a] then u
has the same properties as well. The same in true for [a,∞).

In short, g∞ is the Green’s function associated to the operator

H∞ = (−∆[0,a]+V )⊕ (−∆[a,∞))+V

which resolvent is R∞(z) = R0(z) − 1
g0(a,a)

g0(a,y)g0(x,a).
Here −∆[p,q] denotes de negative Laplace operator with
Dirichlet boundary conditions at p and q. Notice that the re-
sult is true only for dimension n = 1.

The next results follows at once.

Corollary VI.1 The operator R∞(z), ℑz 6= 0 leaves invariant
the spaces L2[0,a] and L2[a,∞]. Moreover, for ϕ ∈ L2, the
state ψ = R∞(z)ϕ satisfies the boundary value problem

(−∆− z)ψ = ϕ , ψ(0) = 0 ,ψ(a) = 0 , for 0 < x < a

and for a < x,

(−∆− z)ψ = ϕ , ψ(a) = 0 ,ψ ∈H 2 .

This corollary shows that R∞(z) = (H∞− z)−1 where H∞ =
−∆(0,a)

⊕
−∆(a,∞).

A. Case V = 0

For the operator H0 = −∆ on the Hilbert space L2([0,∞))
with ϕ(0)= 0 we have an explicit representation of its Green’s
function g0(x,y;z), that is, g0 is the fundamental solution of
the equation ∆x g0 = δ (x− y) with initial data g0(0,y;z) = 0,

g0(x,y;z) =− i
2
√

z

(
ei
√

z|x+y|− ei
√

z|x−y|
)
, with ℑz > 0.

Lemma VI.1 Suppose that 0 < x < a < y ( or 0 < y < a < x).
Then g∞(x,y;z) = 0.

Proof. Assuming that 0 < x < a < y. Then have that

g0(x,y;z) =− i
2
√

z

(
ei
√

z(x+y)− ei
√

z(y−x)
)
.

Thus,

g∞(x,y;z) = g0(x,y;z)− g0(a,y;z)g0(x,a;z)
g0(a,a;z)

, .

A direct computation proves that

g0(a,y;z)g0(x,a;z)
g0(a,a;z)

=
i ei
√

za

2
√

z
[ei
√

zx− e−i
√

zx] [ei
√

za− e−i
√

za]

(e2i
√

za−1)e−i
√

zy

=
i ei
√

za e−i
√

za

2
√

z
[ei
√

zx− e−i
√

zx]ei
√

zy

=−g0(x,y;z).

The case 0 < y < a < x is similar, ending the proof.
�

The next results follows at once.

Corollary VI.2 The operator R∞(z), ℑz 6= 0 leaves invariant
the spaces L2[0,a] and L2[a,∞]. Moreover, for ϕ ∈ L2, the
state ψ = R∞(z)ϕ satisfies the boundary value problem

(−∆− z)ψ = ϕ , ψ(0) = 0 ,ψ(a) = 0 , for 0 < x < a

and for a < x,

(−∆− z)ψ = ϕ , ψ(a) = 0 ,ψ ∈H 2 .

This corollary shows that R∞(z) = (H∞− z)−1 where H∞ =
−∆(0,a)

⊕
−∆(a,∞).
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