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RESONANCES UNDER RANK ONE PERTUI?BATIONS

OLIVIER BOURGET*, VICTOR H. CORTES*, RAFAE \GQ‘
AND CLAUDIO FERNANDEZ*

ABSTRACT. We study resonances generated by rank ong’ per %s of selfadjoint

operators with eigenvalues embedded in the continuous spegt Mnstablllty of these
eigenvalues is analyzed and almost exponential decay ciated resonant states
is exhibited. We show how these results can be applied to Sturm-Liouville operators.
Main tools are the Aronszajn-Donoghue theory fi C‘an ne ﬁrturbations, a reduction

process of the resolvent based on Feshbach-Livsi¢ formula, the Fermi golden rule and a
careful analy51s of the Fourler transform of quasi-Berentzian functions. We relate these
centta@on phenomena

The resonance phenomenon appears several areas of physics and mathematics such
as Classical, Quantum and W. anics. Several attempts have been done to give it
a precise mathematical descri 7e efer to [31] for a discussion about the difficulties
arising in characterizing rlgorous concept of resonance for autonomous systems in

Quantum Mechanics.

One of the most frditfal app oaches consists in defining quantum resonances as poles
of a suitable merowiorphic tinuation of the Hamiltonian resolvent, from the upper
half complex plan® to“ghe lgwer half plane. Each pole appears as an ”eigenvalue” with
negative imagin art, corresponding to generalized eigenfunctions outside the Hilbert
space. Ther 133%\ literature on this subject and we refer the reader to [17] and
references therei

Resonduncesfcan ‘also be characterized in terms of time exponential decay of the time
evolution, of the sgfstem governed by the Hamiltonian (defined as a self-adjoint operator on
some Hilbertgspace H). This behaviour can be traced by means of the survival probability
Pgfor e suitable states . This quantity defined by

) Py(t) = [(p,e o),
as the probability of finding at time ¢ the system governed by the Hamiltonian H

1Atsmitial state . On one hand, we know that exact exponential decay is impossible
for many models of physical interest, see e.g. [31]. On the other hand, if z = A\ — T
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2 BOURGET, CORTES, DEL RIO, AND FERNANDEZ

(I' > 0) is a pole of the resolvent of the Hamiltonian H with ”resonant eigenfunction” ¢
(i.e. Hp = zp), we would formally expect that,
Py(t) = e |l

which is incorrect if the resonant eigenfunction ¢ does not b long\sx’%le Hilbert space.
Thus, in presence of a resonance z, the best one can hope is thie %stenc of a state ¢ € H
such that the quantity (¢, e=*#%)) behaves approximately @s ¢<¥. Both these quantities

equal 1 at ¢ = 0 and in most cases of interest, both appro to'gero as t tends to oo.
The main objective is then to estimate the difference,Q

i i -~
(v, e M) — e o
for ¢ not to close to 0 nor to oo.

For differential operators on the real half line@l;is ifference can be estimated uniformly
in time [23] or in L? norm [3] by means of O chnigues. In these cases, the function v
is a truncated resonant eigenfunction. P 'nt?vgsﬁsﬁmates have been exhibited when the
resonance appears with the perturbati Ql\ol\%r:é stable simple eigenvalue embedded in
some continuous spectrum, see e.g. [9] andy20[*fer a review. The main ingredients are in
that case the Feshbach-Livsic reduction.and=the Fermi Golden rule. In [9], this approach
is actually combined with some pdgitiye commutator techniques (Mourre theory) and the
estimates are obtained once theeige ction is localized in energy. For an approach with
vanishing Fermi Golden Rule cogisganty see [10].

—

(@]

The consistent use of th ch-Livsic reduction to study resonances can be traced
back at least to [18] and has beew a source of several results in the last decades in different
areas. In particular, i been used consistently in spectral theory for Non-Relativistic
Quantum Electrody, ?iz%\ce [4] and [5]. For the relationship between time evolution
(the perspective we ad sAn this paper) and poles of the resolvent in the context of
’%he?y, see also [16], [14] and references therein.

analytic pertur

In this pa(Zi6 e adapt the Feshbach-Livsic reduction to the context of differential
operators t‘i\rbeﬁshalf line and pointwise estimates are exhibited when the resonance
appears the perturbation of an instable simple eigenvalue embedded in the absolutely
continubus ;pe um of such operators. Although various tools developed here can be
easily adapted go a fairly wide class of perturbations, we have decided to narrow our
dis¢ission he rank-one case and to relate these results with classical results in this
fieldy[13], P;O] We intend to propose several extensions in a forthcoming paper.

— o,

ﬁ
We §ar in Section 2 by establishing conditions which ensure that the Fourier transform
a Lorentz-like function exhibits approximate exponential time decay. The proof of

ﬁheo em 2.1 is based on techniques of classical analysis, we have mainly singled out from
9

].\The development of this section is independent from the rest of the paper. In Section
we turn our attention on rank one perturbations of the form

Hy = Ho + &[) (4],
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where Hy has a simple eigenvalue embedded in some absolutely continuous spectrum. In
Theorems 3.1 and 3.2, we show how the instability of the embedded eigenvalue and the
spectral properties of the operators H, are related to the boundary yalues of the reduced
resolvent of Hy and the Fermi Golden Rule. Next, we prove Theoremi 3.3, which formalizes
the existence of a resonance in term of almost exponential deeay inwthe case of rank
one perturbations under suitable hypotheses on the reduced = so@nt of “‘Hy. The proof
combines the Feshbach-Livsic reduction process and Krein’w with Theorem 2.1.
en

Corollary 3.1 discusses the relationships with Kato’s spectzal ¢ tion. In Corollary
C(‘)Despo ing eigenstate under

3.2, we deduce the asymptotics for the sojourn time of t
the evolution governed by H,, for small values of . Finally, e shiow in Section 4, how the
boundary properties of the reduced resolvent of Hy ¢an be uced from the properties
of the spectral measure of Hy when it has finite multiplicity. This reformulation of the
problem is summed up in Theorem 4.2 and its proof makes-essential use of the properties
of the Borel transform, see Section 6. All th@%\%k‘s}re illustrated in Section 5 by a

Sturm-Liouville model. In contrast with [9], t ot of view developed in this paper

continuous in /. Given a function of variable F'(z), we write F'(A + i0) for
lim. o F'(A\+i€). For the Spectral fam gonal proyections of an operator T" we shall
write Ep and p(7T), o(T), 0sc(R)f0,(T) denote the resolvent, the spectrum, the
eigenvalues, the smgular contmuo and‘\absolutely continuous spectra of T' respectively

[29]. The characteristic funct%\% 1 set A will be denoted as usual by xa(z) where
be

does not require any positive commutator, t%:' :
We shall use the notation C1#(I) for he%‘pf nctions with first derivative - Holder
p
ort

xa(x)=1if x € A and 0 if x stands for the real numbers, R™ the non negative
Sz, Rz stand for the imaginary and real parts of z.

reals and C for the comp ezﬁ : ,
LMOST EXPONENTIAL DECAY

Theorem 2. 1 igfthe m 1/ sult of this section and it is the first ingredient in the analysis
. It provides some estimates on the Fourier transform of families
ctlons

developed in pa
of Lorentz-likKe fu defined on R by:
1
& A= g(M)S < > ,

A — A — K2E(\ K)

with k € | 0, o) for some kg > 0 and under suitable assumptions set on the functions
g, F and the famlly of real numbers (A;)xc[—ro,x0)- 1D the following, g € Cg°(R) is real-

% h?é‘d, actly supported on (a,b) for some —oo < a < b < oo, and we also assume
thag 0 <Jg <1 and g = 1 on [ag, bo| for some a < ag < by < b. In addition,

7}191 ) im0 A = Ao, Ao € (ao, bo),

(b) the complex-valued function F' is bounded on [a, b] X [—Ky, ko] and continuous
at the point (Ao, 0),
(H1) for any x € [—Kq, ko), the function F(-,x) is C* on [a, b] and
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(a) the function F’ := O\F is bounded on [a,b] X [—kq, ko],
(b) for any k € [—ko, Ko, the function F(-, k) is C** on [ag, by], uniformly in

K € [—Ko, ko) for some a € (0, 1],
(H2) for any x € [—ko, Ko, infrejag,n] SF(A, &) > 0.

hme corresponding

lateral derivatives. If the function F'is continuous in both. v: es on [a,b] X [—Ko, Ko,

it is necessarily bounded. Note finally that if IF(\,0) >"0.an is Contlnuous at the

point (Ao, 0), we can deduce the existence of an interv. b(] yon which (H2) holds for
small values of k. The condition IF'(Ag,0) > 0 is kno 'b-he_Ferml Golden Rule.

We have that:
Theorem 2.1. Assume (HO), (H1) and (H he)z given any 0 < § < min(|Ag—
aol, |bo — Ao, 1), and k # 0 small enough,

(a) there exists a unique solution m ao, e equation: A\ = N\, — K*RE(N),
denoted by \°, which satisfies: )\ < Ck? for some C > 0 and ag + 6 <
A0 < by — 9,

(b) for allt € R, \
1
1 - d z)\t . —iCx|t] ¢
g [oeng Sgar) =
where c;;' =1+ k*F)( S\\

(2) — ik SF (A2, k),
and the error term Rt ®wy satisfies: |R(t, k)| < Cr? if a € (0,1], |t||R(t, k)| < Ck* if
a € (0,1) and |t||R(w)| < Ok?|In|k|| if a = 1.

Remark 2.1. B cogtbm' (3) and Hypothesis (HO) in Theorem 2.1, we also deduce
that: lim,_,o R anf

1
\ lim =G, = —3F(2,0) < 0.

In partighlarage obtain using ( ) that

Remark: In Assumption (H1), F! is defined at a and b

_p 9

ﬂ
Reﬁii?l The model for the integral described in Theorem 2.1 is the Fourier transform

@ an functions. Let p € R and I' > 0. Then for any A € R,
) 1 r

0 =

v s Al s w ey v

l /OO d\ e—i)\t S 1 _ e—i(u—iF)|t|
T J p—X\—il’ ’

an}fm’ anyt € R,
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which decays exponentially at infinity. This observation is one of the key to the proof of
Theorem 2.1.

Remark 2.3. Theorem 2.1 is closely related to Lemma 2.16 in [10 The regularity of the
function F' is assumed to be the same in both cases and the ma a 15 also based on
subtracting a cleverly chosen Lorentzian and carefully estimats N;%Wamder. While
the time independent estimate in Lemma 2.16 in [10] coverst e of vanishing Fermi
Golden Rule constant, the Theorem 2.1 provides a more precise time-decaying control on

the remainder term, which is actually required to estim, e‘gle ourn time (Corollary

_—
The strategy for the proof of Theorem 2.1 follo esseijtially [9]. The fixed point
argument has been borrowed to [22]. C

2.1. Proof of Theorem 2.1. For simplicity, letas wiité for any (A, k) € [a, b] X [—ko, Ko,
2), we have that for any A\ € [ag, bo],

D\ k) = A\, — A — k*F(\, k). Due to Hypoblesis

0 < |l€’ S Ko, |D(>\, H)| Z /£2 inf}\e[ao,bg] % P ) O ow, ﬁX 51 € (O,mln(‘)\o — CLO|, ’bo —

Mo, 1)). According to Hypotheses (HO)a 1)(a), we can pick 0 < k1 < kg such that:
[ ] Ran ()\ — H2§RF( )) [CLO bo
° SUP (), k) €[ao,bo] X [—k0,k0] | FJ ()\,

In particular, for any \ € | < k1, [IDOE)] > A — X — £2RF(N)] > 0y
This allows us to define the%xk G for A € [a,b] and 0 < |k| < Ky by: G(\, k) =
sens

D(A, k)~! and then to give a o the integral

01], for any |k| < Ky,
<0y

(4) Z(t,

1
| dre (0 S
£ ¢l )\y<)\,§—/\—li2F()\,/i>>7
for t € R and OZ/ fil/Since Z(—t,k) = I(t, k), it is enough to prove Theorem 2.1

for t > 0 and 0 < k1The proof consists in adding and subtracting the Lorentz-like
function SGwhich is‘explicited later on) on the interval [ag, by] and reduces the problem

to study
I
To(t ) = _/ dre NS G\, k).
— / 7 Jag
ThlS ‘regra contributes to the quasi-exponential behaviour term in (1) while the remain-

co rlbute to the error term R.

iven'o; as before and |k| < k1, we define first by a fixed point argument the real
m > for k € [—Ky, K1)

o

dmma 2.1. Gwen any Kk € [—kK1, K1, there is a unique solution to the equation: \ =
Me's K2RE(N k) in [ag, bo]. Actually, if \>®° denotes this solution, we have that: \>° €
lag + 01, b9 — 51 and [N — Al < K2 SUD(x )elao bol x [—moumo] |1 F (A )]
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6 BOURGET, CORTES, DEL RIO, AND FERNANDEZ

Proof. By hypothesis, for any [k| < 1, &2 SUD(x .)cfagbo)x [—romo] |F (A K)| < 1 and Ran
(Ae — K2RE(,K)) C [agp + 01,by — 61]. Therefore, given such x € [—ky, r1], the function
A = A — K2RF(A\ k) maps [ag,bo] (resp. [ag + d1,b0 — 1)) itself and is strictly
contractive. So, we apply the Banach fixed point theorem, and t@sions follow. [

This proves statement (a) of Theorem 2.1. Now, let e for any A € [ay, bol,

|/€| S K1,
DA\ k) = Ay — A — KZF(A%, H) s )MF(A:O, K)
Di(\E) =X — A= K2F(A® K i (A= 2A%)
=\ — X\ — ik’ F( XX’ . K)(A—AY)
Note that by Hypothesis (H2), \SD A K) 2 ) < 0 as soon as K 7é 0. This
allows us to define the function G for ao, bo O < |Ii| < k1 by G\, k) = D\, k)"

For X € [ag, by] and || < k1, we also hav ha

[Di(A, k)| = A = A —in? sup \F’(A,/f)\> AT = Al

()\ H)E[ao bo]X[—HO KZ()]

(5) (1 —K (Aﬁ"‘i})\ [F'(A )I) DO )| = 81D )]

—f-io ko]

In particular, for A &ao, Ogfand 0 < |k| < k1, we define the function G; by G1(\, k) =
Di(\, k)~ and it hélds:

y N

4 1GOR)] < 8IGO R)].

Finally, for HN, bo] X [—ko, kol, DA, k) = A — X —ik2SEF(A°, k) — k2 (F(\, k) —
F(\>*, Kk ence, for' A € [ag, by] and |k| < k1, we obtain via the Mean Value Theorem

AT = A =ik F (N, K)] —52< sup [E'(A, /ﬁ)l) AT = Al
(Aw)

k) €lag,bo] % [—kKo,Ko]

ao,bo] X [—Ko,K0]

ﬁ
0 5 =(1-# sup [F'O\6)] ) 1D R)| > 61D, ).
(\r)E[

N
n particular, for A € [ag, by] and 0 < |k| < Ky, it holds:

GO R)| < 6TIGO )]
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Recall that the function g vanishes outside [a,b] and g = 1 on [ag, by]. So, we can write
for t € [0,00), 0 < |k| < k1, Z(t, k) = Ti(t, k) + Lo(t, k) + Ts(t, /@) where

1 [
Io(t, k) == —/ dX e M3 (G(\, k) — Gi(\, k)

™

1
Ty(t, k) ::%/ dX e g(N\)S G\, k) / d\ %G A K)
a bo

It remains to perform the analysis of each term.

Step 1. We start with the term Z;. We write for M€ [aonbo] 0\0‘< k| < K,

1 1 1
= (%bﬁ <)
where a,, 1= 1+ k?F'(A\>, k) and b, := A\ ik JFD)\?) = e + KZAXF' (XX, K)) —

0
F(A2,k)). Note that ) < 1 — K”sup, )¢ bo‘%ﬁmp()\,mﬂ < |ay| for any |k| < K.
Now, for 0 < || < k1, we consider the fut(ti& 1(:4r) defined by

D))

(7) 91(z, k) = =

ne, with poles at ¢, and (.

which is meromorphic in the coniplex e,
2 SE(A )

In particular, for A € oﬁédso <1&| < ki, gl(/\, k) = SG1(\, k). Note that for any

0 < |k|] < Ky,
|)\oo - /< 2 1ch )\oo < 25—1 F/ A
(8) S k) SFEAL k) < K76, sup [F'(A k)|
(A,K)E[ao,bo]x[—h‘/o,lﬁo]
Explicit calc ) yleld
\SF(AOO )

Once m'erve t at for 0 < |k] < A1, 01 < 1 = K2SUP( w)elao bolx|—romo] [ (A K)] < 14
) we also deduce that:
SE(AY, k)
(14 KT SUD(x ) efag,bo) x [romo] [E (A K)])?
w)ﬁ'her words, for any 0 < |k| < k1, the pole (, lies in the lower half-plane and:
SE (XX, k

2 ¢—1 00 2 K ) )
—Kk“0 SF(AY, k) < Q¢ < —R7G; <0.
' (14 KT SUD(x ) efao bo) x [romo] [E (A £)])?

< 0.

5 ¢, < —K20,
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Now, fix 0 < 8} < & and 0 < w7 < sy such that: &7 SUp(y .eiag bo)x [ romo] |[F (A 8)| <
9101. In view of the bound (8) and the fact that A\3° € [ag+ 0y, by — 1] for any 0 < || < K,
this implies that for any 0 < || < K], R(, € [ao + (61 — 67),bo = (61 — 67)]. Let v be a
fixed smooth curve in the lower half plane, joining the endpoinfs of the interval [ag, bo]
and staying at positive distance from the closure of the bou ;%se {(e; 0 < |k < K1}

vel J U

and {(.;0 < |k| < &,}. Then, for 0 < |k| < &}, the closed ~"enclose only the
pole (.. and so,

9) —j{ e g (z, k) dz =
JUy

T _
—
with ¢, = a!. Therefore, b
1 —

bo
(10) Zi(t, k) = _/ e MS G (A, K) d cne“st—i- / e #g1(2, k) dz

Now, for all z € 7, g1(2, k) = K2hi(2, K) Q
\pn

1(z, k)
% cn =G
with p, = S F/(\®, &) and g, = 7}7 o FI(A®, ).
By construction, inf ., o< ,.;|<,i | >0 and mfz@ 0<|r|<n |2 — (| > 0, so the func-

tions hy(-, k) are analytic i d open region containing v for any 0 < |&| < K].
Once combined with Hypothes ; )(b) and (H1)(a), this implies that sup,c. o<|x<x; [71(2, £)| <

00 and SUP,¢, o<|sj<n; MG S| <
Now, note that fdr any ¢ >0 and any z € v, |[e"**!| < 1, since the curve v is contained
in the lower half glangs ave that for any ¢ > 0 and 0 < || < K/,
(11) /\ /e #a(z, k) dz| < CK?,
5 5

(12)

V.
for gome (
S 2.3[11 order to conclude, first define for ¢ > 0 and 0 < |k| < K,
ﬁ

0
13) 3 R(t, k) :=T(t, k) — cpe I = (Ty(t, k) — cp e ) £ T,(t, k) + To(t, k)

1 .
\ ~ — _/e_ZZtgl(z, KJ) dz +Ig(t, H) +Ia(t» ’%) ’
vy

e to (10). According to (11), Corollary 2.1 and Proposition 2.1, all the terms on the
RHS are of order x? (for x small enough), which yields our first estimate on R.
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Now, note that integration by parts yields for ¢ > 0 and 0 < |s| < &7,

/ 1ztgi(z7/€) dz = Zt/ g (Z K, dZ+€ zbot(\ b07 zaot(\Gl(ao’ ),
il Y

bo ] bo
/ A\ e MG (G k) — GL(\ K)) = it / dhe MG (G )\ K

+ e M (G(by, k) — G 507

— e "' (G (ag, K

Q 0 G b, k)

where we have used g(a) =0 = g(b and = . It follows from (13) that for
t>0and 0 < |k] <K,

/aaod/\e_i’\t(g(A)SG()\,n))’:it/ dre )\)\ng )+e—w0f<‘G(aO, k),
/bdAe-%(A) GO\ K)) = /

bo

(14) itR(t, k) = jl(t, 5t k) + Ta(t, k),

where \ e

— Gi(A, k)

5
~
»

b

£ d) —iAt(g()\)%G(A,H))/—i—/ d)\e_iAt(g()\)%G()\, ﬁ))’) .
bo

According to

of order x2.

a € (0,1) frespi

The las grt (ﬁ

-

Noposmlon 2.1, the first and third terms on the RHS of (14) are
orollary 2.2, the second one is of order xk** (resp. x?|log|x||) if
=1). This completes the proof of statement (b).

heorem 2.1 is a direct consequence of formula (2).

a . The quantities 0, € (0, min(|Ag — ao|, |bo — Xo|, 1)) and 0 < k; < kg are fixed

2 2TJe i)alities. In this section, the results are stated under Hypotheses (HO), (H1)
d (H
according to conditions explicited in the proof of Theorem 2.1.

irst, we provide upper bounds on the terms Zy and J5:

Proposition 2.1. There exists C > 0 such that for allt € R, 0 < |k| < Ky, |Zs(t, k)| <
Cr? and |T5(t, k)| < CK.
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Proof: We deduce from Lemma 2.1 that for all X € [a, agl, |k| < k1, |[D(A\, k)| > ag+ 61 —
A > 61 > 0. On the other hand, for A € [a, ao], 0 < |k| < Ky,

(15) SG(\ k) = /{2% /

In view of (HO)(b), we deduce that for t € R, 0 < |k| < Ky,

/ dre g\ G\, k)

< Ck?.

<rK? sup |SF(\ k) 3 S

A€la,ao)

For all A € [a,a0], 0 < |k| < k1, (¢S G) =¢'SG
L, SFO ) o R(DOGR) DY, £))SF(, k)
’4

R e RS T g e

A
with D'(\, k) = —1 — k*F’(\, k). Tt follows that fo@ R, 0 < |&| < K1,
A

/a Y e M g)SE < %Q WIRZ a:1;1|{<i31|%F(A,K)|

1+n2|F’(>\ K)SF, &)

% CLO + (51 >\)

C

in view of Hypotheses (H \}(‘H
AN G, k)
and the conclusionfof thﬁwoosmon follows. O

K
. A similar procedure applies to the term

Now, we pro e upper bounds on the terms 7, and 75, which rely on the following
lemma:
Lemma 2)6t € , 0 < |k < K1 and 2z, = XX — kP SF(\>X k) =
A — K2 ()\N ). There e:czst C’ > 0 and 0 < ko < Ky, such that for any 0 < |k| < Ko,

bo N Cr2O=FHD 4f a—F+1<0
// M}\ %Z“L dA << Clloglkl| if a=p+1=0
3 a A=z C if a—B+1>0

roof)We start with some preliminary remarks. By Lemma 2.1, Rz, = A° € [ag+01, b —
any 0 < |k| < k1. Lemma 2.1 and Hypothesis (HO)(a) also imply: lim, 0 A = Ao.

01
ﬁimlly, Sz, = —ik2 S F(A®, k) < 0 due to (H2). Since F is continuous at ()\g,0), we

btain that:

C\
lim ~=% = —FF()\g,0) < 0.
k=0 K
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So, given 0 < 6 < IF (Ao, 0), we can fix 0 < kg < k1, such that for any 0 < |k| < ko,

(16) —K? sup IF(\ B)| < Sz < —K2y.

()\,N) S [ao,bo] X [—No,no]

Now, with the change of variables A — Rz, = u|Sz,|, we obtain t \
bo )\ _ % o br

/ | Zﬁ| d)\ — |gzﬁ|a—ﬂ+l/ ’/“L|
ao |)\ - zf‘i’ﬁ arx

R — ag and b,

REM |\$z,$
We denote v = a — .
Case v # —1. We split the integral, integ%tlgn'g @the intervals [a,, max(—1,a,)],
h
[

[max(—1,a,), min(1,b,)] and [min(1,b,),bs. O &“iterval [max(—1,a,), min(1, b, )],
the integral is bounded by the same integralgn [+1, 1] for which we observe that the
integrand is bounded by |u|* < 1.

finally bounded by 2|Sz.["™. The
integral on [min(1, b, ), b,] is bounded by

where

A, =

(dp = (bo — Rz,)7 " _ Sz
1 (v+1) y+1

b/i (o4
Igzﬁp—i—l/ ‘M' d[l, )
1
We manage the 1ntegral on t h\{am max(—1, a,)| analogously. Estimates for the

case v # —1 follows now from

Case 7 = —1. We splitfagainthe integral, integrating on the intervals [a,, max(—1, a,)],
[max(—1, a,), min(1, 1d [pin(1,b,),bs]. On the interval [max(—1,a,), min(1,b,)],
the mtegral is bou ded /by & same integral on [—1,1], which is bounded by 2. The
integral on [min( bﬁ ' 1s/bounded by:

b
d,u < / —dp =In(by — Nz,) — In |z, ] .
(p® + 1 1 M
We man{\t\em ral on the interval [a,, max(—1,a,)| analogously. Estimates for the
oll

case V= gﬁs again from (16). 0

Lemima 2 There ezists C' > 0 such that for any X\ € [ag, by, 0 < |k| < Ky,

ﬁ
G(Aa /i) -Gy <)‘> KJ)' < C’%2|G()‘7 H)’ sup |F/<)‘7 ’Ii)l )
3 ()\JQ)E[ao,bo}X[—lio,lio]

\ I GO\ k) — Gi(A\ K)| < CREG(N, &) PIA — Aot

Proof. For A € [ag,bo], 0 < |k| < k1, we note that Gy — G = G(D — D;)G; and so
|G — Gi| < 6,?|G|?|D — Dy (see e.g. (5) and (6)). On the other hand, for A € [ag, by,
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k| < Ky,
(17) D\, k) — Di(\ k) = 62 (F(\, k) — FOAX, k) — F'(A%°, 1) (A — \))

\\ 20

= [ (P = FOZ.0) fi\\\

(H1)(a) entails: |D(A\, k)—D1(\, k)| < 2CK*|A\— A SUD (A scfac: 1 [F'(A, k)], which

leads to the first estimate once noted that |G(A, k)|| A= A% <% for A € [ao, bo] and
0 < || < k1. (H1)(b) entails: [D(A, k) — D1(\, k)| < 2‘) o+l which leads to the

second estimate. O

>< —K0, Ho

Corollary 2.1. There exists C > 0 such that for agy t Eﬂ%, < |K| < Ko,

-

To(t, )| g/o GO\ & LQ‘(X’T)'CM < K2

ao oS
Proof. We integrate the second statemeﬂ@ a 2.3 for 0 < |k| < k9 and obtain that,

bo bo |)\ o )\oo|a+1
A A, d)\ & d\
/ao GO R) = G )l L E X F RS FOE, R

We use Lemma 2.2, with § = gi +\P 1nstead of a. Then, the number o — 5 + 1 in
P

Lemma 2.2 is just «, which is ve\The first and second statements follow. 0

Lemma 2.4. There exzsts&&sqch that for any X\ € [ao, bo], 0 < |k| < K1,

Gi(\ K| < Cli2|G()\, K)FIA — A2,
< K1, we can write the difference between the difference of
wrt. A\ G'—Gy = L1+ Ly+ Ls where L1 = G(G1 —G)(1+
'A>® k) — F'(\,k)) and L3 = G(G; — G)(1 + K*F'(A>, K)).

Proof. For A\ €
the derivatives
RAF' (N K)),

Recall that

—

agh

G(D Dy)G; and so |G — G| < 5f2|@]2\D — Dy (see (5) and (6)),
Di(\, k)| < Cr?A — A|*T! due to Hypothesis (H1)(b) and (17).

sitive multiplicative constant, the quantities L; and L3 can be bounded by
— |2 while the term Ly is bounded by k2|G(A, k)|?[A—A2|*. The proof

follows from the fact that [G(A, k)| [A — A <1 for X € [ag, by] and 0 < |k| < Ky. O

ary 2.2. There ezists C' > 0 such that for any t € R, 0 < |k| < Ko,

bo K if a€(0,1)
|@umﬂs/‘me@—GNAMMAsc Wlloglel| o a=1
ao K2 if  a>1
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Proof. We integrate Lemma 2.4 for 0 < || < kg and obtain that:
bo , ) bo |)\ )\oo|a
G'(\k)— G\ R)|dN<C dX.
[Teom - <on [T R {Am oE
Then, we apply Lemma 2.2 with § = 2. Indeed, if a € (0,1) }R;G resp. a > 1),
o — B +1=a—-1<0 (resp. =0, resp. > 0) which prove the atement. The
second statement follows now from the first and Corollary 2\

3. RANK ONE PERTURBATIONS
K

k ¢ one pegturbations of self-adjoint

In this section, we shall prove results concerning r
operators. In 3.1 we show how the positivity on the 1ag1r§uy part of the unperturbed
reduced resolvent implies pure absolutely contindous spectrum. In 3.2 we describe how a
simple embedded eigenvalue turns into a resoman @e smoothness of the resolvent is
required. In 3.3 we relate this to dynamic behavigr ofithe system.

3.1. Behavior of Spectra. Let Hy be a N operator on Hilbert space H, ¥ € H

a normalized vector and define —
(18) HH—W P, keR.
My =pag{Wl,. — 2)

Let .
—2)"W/z ¢ R}
be the cyclic subspace genera w his space is independent of x and reduces the

operator H,, for every s, see 13 .
Let us denote by HY4h % of H, on Hy, i.e. HY : Hy — Hy is given by
H,~y, for all y € DomH, NH, .

Let P be an ort pr )ectlon such that PHy, C HyP, that is the range of P reduces
Hy (see [21] and note P+ :=1— P, HL = PLH,P+. For k € R then define
(19) = (v, P (H; — 2)7' PHY)
and

V. Fro(A+10) := 11%1 Fri(A+ie)

Recall that g, ) and 0,(H) denote the absolutely and singular and point spec-
trum 5 ect}vely Wlth the definitions introduced above, our results on the behavior of
the spectrasread as follows,

Th real 3.1. Let J C R be an open interval. If for every A € J

E)\ SFo(A+i0) > 0
thep J C 0,.(HY) and JNo,(HY) =0, for all k # 0.

Theorem 3.2. Let J C R be an open interval. Suppose that
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(1) SFo(A+140) > 0 for every A € J.
(2) If Hyp = A, for some X € J, then (p,¢) # 0 and X is a simple eigenvalue.

Then J C 04.(Hy) and JNoy(H,) = 0, for all k # 0.

Remark 3.1. It could happen that o,.(H,) # ¢. 5\

Before going into the proofs, we shall need a prelimi ult. Let us recall that
p(H):=C\ o(H), where o(H) is the spectrum of H.

Lemma 3.1. Let H be a self-adjoint operator and P rthegonal projection such that
PH C HP, that is, PH reduces H. Then for all z{€ p(H),
) IPJ_

self-adjoint. By the basic criterium for self-adj] 1165 Ran( H |piy —2) = PTH (see [29]
p. 256).

Let ¢ € P+ be arbitrary. Then, 1sts pE DomH|le = PYH N DomH such

that ¢ = (H — 2)Pt¢. Now, PL(H _1 Pty = PH(H — 2)7'P+(H — 2)Ptp = Pty
and
PH(PtHP* - PL PrHP+ — 2)7'PYH(H — 2) Pty

PL PYHP — 2)"Y(P*HP* — 2)Ptyp

PJ_(H ) 1PJ_ PJ_ bl
Proof. Since H is self-adjoint and the rangek%ﬂs:*re‘&ces H, we have that H|p.i4 is also
t

&m D
Now, let us pr%or s 3.1 and 3.2.

Proof of Theore nce P and Pt reduce Hy, we have that for any z € C \ R,
: )~1P, and the corresponding commutation relation with P+ (see
5 p 173 Ch. 3) Therefore,

o— A —ie) ) = (P, (Hy— X —ie) ' Py)
. + (P, (H0 — X —ie) tPHy)
) — (P, (Hy — A — ie) " Pib) + SFo(A + ie),

ﬁ
%:’:ejor the last equality we use Lemma 3.1.
we note that the term (P, (Hy— A —ie) "' Py) is always nonnegative. Actually,
reany self-adjoint operator H, setting u = (H — z)~ 'y we have
(v, (H =2)7"y) = S((H - 2)u,u)

= Szul”.
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Hence, 3(v, (H — z)~'v) is nonnegative when Sz > 0. Holomorphic functions which map
the upper half plane into itself called Herglotz, Nevanlinna or Pick functions. The limits
of this functions when approaching the real axis from above exists ase., see [30] Theorem
y,

Using hypothesis (20), we deduce that for every A € J, \
ni%l S, (Hy — A —ie) ")) > SFp(A +i0) 0.
Now, by the spectral theorem, there exists a measure p sucm
Ho —
(¥, (Ho — 2) .

and Hy, restricted to the the subspace of cych ty gene d by ¢, that is H¢ defined

above, is unitarily equivalent to multiplicatio iﬁyntlty in Lo(R, dpy).
\
A,

A result essentially due to Aronszajn an u‘é"(see 13], Theorem 2 and also [30]
Theorem I1.2 (iii)) states that for any B he absolutely continuous part of i,

is given by fipac(A) = pyp(A N A), whe
\
A= {0 <, (Ho— A — ) < oo}

Ny o

Also, the singular part of i, y ¢5 ,uw (AN B), where
Qﬂ A —i0) 1) = oo}

In fact due to Krein’s formula .13 in [30]), we have that:

) A is the suppo ‘\ c. part of the measure fy; in the expression
_ / dlhp( )
R t—z '

1) = 0o then (¢, (H, — A — i0)"1p) = 0 for x # 0.

Thereforﬁh%;s/u follows. U
Proofiof Th 3.2. We have the decomposition H = H,, © Hi, where H,, is the cyclic

space.gen. rated by 1. This subspace reduces H,;, for all x [13]. Let us denote as above
b HY t e part of H, on M, and by Hw the part of H, on H;; . Then,

K

o €
HY" :Hy — Hy,

Since by Theorem 3.1 J C 0,.(HY) C 0(H,), we conclude J C 0,.(H,) .
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Now assume H.0 = N\, with A € J. Write § = 60, + 05, where 6, € Hy, 0 € Hi,
H,01 = X0, and H,.0, = A0y (H, and ’Hi reduce H,, for all k).

Since HY has pure a.c. spectrum in .J, by Theorem 3.1 it fo?éws that #;, = 0. Since
0y € Hi, we deduce that 6 1 ¢ and (6,1) = 0. Hence,

N = H,.0 = Hy0. 5

Therefore, A is an eigenvalue of Hy and A € J. From the faN is a simple eigenvalue
of Hy, we conclude that # = cp which contradicts th@w& (p, 1) # 0. Therefore,
O

at
A cannot be an eigenvalue of H,,. T

_—
3.2. Existence of resonance. Now, we sta t'h&snusconcerning the existence of a
resonance described by an approximate ex ol@ti decay of the survival probability.
For the next theorem consider the situation*wheregg Hy has a simple eigenvalue Ag, with
Hyp = Aop. As above, given a normalizedyectorg) € ‘H such that (p, 1)) # 0, we define
H, = Hy+ k|Y)(¢], ke R. Let usﬁs{ tliere is an interval I containing A\ such

that F.(\ 4+ ¢0) exists, for all A € I, %

(21) Fi(2)
N
and P = (p, ), Pt =1T— P.mu we denote the set of functions F' such that F’
e

is f-Holder continuous in Jg cf. 6. Then we have,

N Y

Theorem 3.3. Let Hyp = Ao where g is a simple eigenvalue. Assume that Fo(A+i0) €
CHP(I), with 8 > 0 apd itgatisfies

£
Let J C I be alos intgfval such that \g is an interior point of J and SFy(A+1i0) > 0,

forall X € J. \
Given %oth haracteristic function supported on J which is identically 1 in a
A
4

neighbomhoo 0, we have that for allt € R and all small enough x # 0,

23),

(o, e g(Hy)p) = cxe™ M+ R(, k)

Wit ang ¢, described in Theorem 2.1.

~In particular, 3G, < 0, ¢ = 1+ O(k?) and |R(t, k)| < Ck*. Moreover, |t||R(t,x)| <
2 dfa € (0,1) and |t| |R(t, k)| < Cr?*|log k||, if a = 1.

Before proving Theorem 3.3, we need the following lemmas.

Let H be a self-adjoint operator defined in a Hilbert space H and P be an orthogonal
projector with RanP C Dom(H), with RanP of finite dimension.
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Lemma 3.2. (Feshbach-Livsic formula) Consider z € C,Sz # 0. Then the operator

M = P(H — 2)P — PHP*+(H* — 2)"'PYHP s invertible and as an operator M :
RanP — RanP and
IP/

PH—z)'P=P(PH—z2)P— PHP-(H p.

See [18] for a proof. 5

Lemma 3.3. Let f € CYP(I) where I C R an open mterval ssumg that f(x) # 0 for
all z € I. Then (1/f) € CY8(J) where J is a closed intefva ont Led inI.

Proof. Since f(x) # 0for all x € I, the functlon 1is g*. To proye the (- Holder continuity
in I, we compute, 5
Lo e ) f(( o] )
( f) () = ( f)( ) )

For z,y in J, by continuity the denomlnat is bo ded away from zero.
On the other hand, by continuity of a the Mean Value Theorem, the first
term in the numerator satisfies,
L

[F W)l () + f)l < clx —yl,
.,

Because Lipschitz continuity impli dlcder continuity, we conclude that the first term is
[-Holder continuous. e\

The second term is bounde

le f'w)l
which finishes the pr ‘\ 0

Proof of Theore oll )mng Krein’s formula, see [30] 1.13 and [13], we obtain that
Fo(2)
1 + H.F()( ) '
Therefore 20 exists and is finite for all A € J and x € R. By hypothesis and

Lemma tlfe ion A — F.(A+10) belongs to CYA(J). Actually, (A, k) — Fr(A+10)

is a C’Q unctlon Note that for all (\,x) € J xR
3 SFo(A + 10)
(A +10 0
SEOH ) = TR e
111¢e )\0

Si 35 simple, we can use the Feshbach-Livsic formula, see Lemma 3.2, to obtain

1
w e, (H o) = (o, (He — 2)¢) — (p, PH PL(HL: — 2)~1PLH, Py)

1
Ao+ w[{p, )P = 2 = w2 [ {0, V) [PF(2)
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From the above identity and (22) we obtain that for all x # 0, for all A\ € J the limit
(o, (H, — X\ —i0)~ L) exists and A — (¢, (H, — X —1i0)"L¢) is a CLF(I) function.

Also, by the Stone’s formula we know that

(25) (p,e"'g(H,)p) = 13551% Rg(k)e’“t%m (He — X — Qh\
1 L
HM@PE(A + @0)) ax.
D=

= - Ne MG <
- Lo (e
since the limit can be taken inside the integral by (24).
.
To finish the proof, apply Theorem 2.1 to (25) with A\, = Xg + x|(p, ¥)|* and F(\, k) =
o, ) PEA +10). ) 0

3.3. Spectral Concentration and Sojou gi'me‘.-)l“he results of Section 3.2 bear the
two following straightforward consequences o
Corollary 3.1. Under the hypotheses o XQ 3.3, we have that for anyt € R,
f& — oIt
e

(26) mw,e‘iﬁ%\““gmw =
\\;

-

where T\, = | (¥, )2 SF(AZ, &

RN

by eIt we obtain,
)

Proof. By multiplying the equ
e, ei(Hﬁ'\ L e  {(AD

After scaling the tim 1@\§):acing t by n;_rk,’ it follows that
7 _ i 1t t
(o % L ZH Mg (H,)p) = e 4 et R
The corollary 2&110\7&7 ov/ from the estimates on the error term in Theorem 3.3. O
Remark 3 otesthat |T'y, — Ty| < C|k| with Ty = SF(N, 0).

is related to Kato’s spectral concentration, see [12], [15], [21]. The con-

nectionhetweeny this type of formula and the spectral concentration has been established

for iSotate 'gnvalues (of the unperturbed operator) in [12] and extended to embedded
[

eig Value5in 15].

~ Giverrany Hamiltonian H, the quantity |(p, e tp) |2 measures the probability of find-
g ésystem in its initial state ¢, at time ¢. Hence,

Formuila

th
\ 2%, mio)= [l m)lar

—00
represents the expected amount of time the system spends in its initial state. As remarked
in [24], one expects that in presence of a resonance near \, there exists a state ¢ whose


http://dx.doi.org/10.1063/1.4989882

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record.

Publishing

RESONANCES RANK ONE 19

sojourn time 7y (¢) is very large and such that the spectral measure of H in the state ¢

is concentrated near A. An explicit lower bound on the sojourn time appears in [2] also

in the case of rank one perturbations. /
a

Corollary 3.2. Under the hypotheses of Theorem 3.3, we have t A[Qny Kk # 0 small

enough
<C kPt if 0<a 1/)
/{2FH - 1 Zf o > / ’
for some C' >0, where . := \/g(Hy)p and T, = (1, p) %()\H ).
—~—

™H, (Px) —

Observe that ¢, — ¢ when k — 0. -~
Proof. We denote by || - ||2 the Hilbert norm on CjR, . F)r any 0 < |k| < ks,
NIZ(t w5 — leal?lle 3] < [ R(E, K13 Y2 + [exllle™ 1 ]l2)
Rt 1)l + 2exllle™1]l5) .

< [[R () l2
where 7 is given by (4). Now, [le~%x/|2 :&. hé result follows from the estimates on

the error term in Theorem 3.3. —~ OJ
Remark 3.3. Corollary 3.2 providés<explicil asymptotics on the sojourn time based on
0
s14

estimates (23). It is actually poss “derve suitable lower bounds on the sojourn
time under much weaker regulari < tions on the reduced resolvents by means of the
concept of energy-width [2]. \

4. FINITEAWSPECTRAL MULTIPLICITY

First, we recall the'coneept of spectral representation and spectral multiplicity for a
general self-adjoint Qperator.

4.1. Reduced [%%E;. Spectral measures. Let H : H — H be a self-adjoint
operator in ithert space H. From the spectral representation, see [33] Theorem 7.18
p.195, we knowtliat there exists a family of measures {p,, : & € A} and a unitary operator
U such tht t}ae owing diagram commutes,

_ V. " AN M
U | I
5 @aEALZ(Rapa) & @QEAL2(R7 poc)

tis, H = U _1Mid(~f where M;; is the maximal operator of multiplication by the
ntity id, i.e., Migf(x) = xf(z).

ssume that the operator H has finite spectral multiplicity, that is A is a finite set
with N elements. We can construct a matrix measure distribution p and a space of vector


http://dx.doi.org/10.1063/1.4989882

AllP

| This manuscript was accepted by J. Math. Phys. Click here to see the version of record.

Publishing

20 BOURGET, CORTES, DEL RIO, AND FERNANDEZ

valued functions Ly(R,CY, p), such that H = Uy M;yUy where Uy : H — L*(R,CV, p)
is unitary and My, f(z) = xf(z) is defined from L*(R,C¥,p) — L3(R,C¥, p). For these
concepts see [1] Vol. 2 section 71, [34] section 10, [26] p.101 , [1] Section 72 and [34]
Theorem 8.7. (}1

4.2. Multiplicity of eigenvalues. Since H is unitarily equi aw operator multi-

plication for the identity on Ly (R, p), with p a matrix measuge ribution, it is interesting
to characterize the multiplicity of a given eigenvalue of H irtw) . For fixed X, denote

by 0, the measure

(28) 5y(A) = {(1) i ’Z )

where A C R is a Borel set. In what follo@ = (m;;) shall denote a non-negative
symmetric matrix with m;; € C where 4, j ,...IN.JWe shall use the notation M, for
the matrix measure distribution with entgies (fugdx)

Lemma 4.1. Consider Ay € R, p a\v{t; measure distribution defined on R, with
w({Xo}) =0 and M a non-negative nsiwatrix as above. Let us take M,y defined on
the space L*(R,CN du + MJ,,).

id ohltiglzcityp € {1,2,..., N} if and only if RankM =

)

Then X\ is an eigenvalue of
p if and only if dim (KerM )=

Proof. A\ is an eigenvalue i if and only if there exists a non zero vector ¢ €
L*(R,CN du + Méy,) such that(M;q — Xo)p(x) = 0 almost everywhere. This implies
the existence of © € “%Sh that the eigenfunction has the form ¢(z) = xq\3(2)4,
where x (1 (2) = = X\p and 0 otherwise. Thus Ag is an eigenvalue of M;q if and
only if ||¢l|7, = (. M/Y) and ¢ = X} (2)d. Now, for the difference of two eigen-
vectors we he;y’“ ()2l — X0} (@)0]|7, = (W, M) with & = @ — U. Since M is non-
negative, (1, = 0 Mand only if Mw = 0. Therefore the eigenvector ¢ = X1} (2)4 is
different fr 7ji:%qnvector X{2o}(@)7 in the space L*(R,CN, du + Md,,) if and only if

Mu # Muv: let us construct an isomorphism between the subspace of eigenvectors
and th ayge M in the following way:
£ I: Ker(Mg— M) — {V: Mu = v}

-ﬁ
, I(xpoy (@)) = M
ince g biyective and linear the two spaces have the same dimension and the lemma is

rovers

O
N
\i;emark 4.1. If rank M > 1, then the matrixz distribution dp+ M0y, does not correspond

a Sturm-Liouville operator with limit point case conditions, since the singular spectrum
of such operators is simple see [32].


http://dx.doi.org/10.1063/1.4989882

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record.

Publishing

RESONANCES RANK ONE 21

4.3. Reduction process. Let B C R be a fixed Borel set and let Pg := Ep(B) where
Ey is the spectral family associated to H. Let us decompose the matrix function p as
follows:

with A C R a Borel set where

pe(A) :==p(ANB), pp(A):=p(AQB
The following result will be useful to prove almost expo Iﬁﬁjl of resonant states.

Theorem 4.1. Let 1) be a vector in H and H be a self<adjot g;az?ator with finite spectral
multiplicity N. Then

p(A) = pp(A) + ppe(A) / \

(Po (PP — 2 Py = [ LA >g) (@)le
) Uls) (@), dp(e) U o) (@)
j r—2
Remark 4.2. In case de matrix dp one entry
(Uny)(z ) ) = [(Unv)(2)|*dp(z).
Before we prove the above theo eed the following lemmas.
Lemma 4.2. For any Borel the following identity holds,

(29) - EH AN B) = PyEy(A)Py

Proof. We first not hat = HPp = f(H) where f(z) = zxp(z) , with x5 the

characteristic functi orel set B. Also we know that Epy(A) = Ex(f1(4A)),
ha

see [8] Theorem 6 p.158. Thus,
B HP = Epynps(A)Pp = Enpy(A)Pg

= Enp,(A)En(B) = En(f7(A))En(B)

= Ey(fY(A)NB).
We cl 1m m that = rxp(x) one has that f1(A)NB = ANB. Clearly, if r € ANB
then —xEA sox € fTHA).

Also € f ( ) N B, implies that f(z) € A. But for x € B, g(x) = 1so f(z) =
€ A, ending the proof. O

%a 4.3. For any vector ¢y € H

(30 (Ea (D), ) = /A (Uart) (@), dp(a) U (x))
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Proof. From the spectral representation theorem we know that xa(H) = Uy'M, Uy
where (M, h)(z) = xa(z)h(x). Then

(En(D), vy = (xa(H)Y, )n = (Un xa(H)Y,Uu0) 1)
= <MXAUH¢>UH¢>L2(P)

- /RXA(LE)<(UH"7Z))(x)adp( ) %(w})
= /A<(UH¢ H\
B

= (Eg(ANB)g,g). According
he following identity:

to Lemma 4.3 and the definition of pg(A)
\L_.
wd) = [ (e M J (W) @), o @) @),
N
On the other hand, using Lemma 4.2 ge

Ny

(31) wyp(d) = PBEPBH@ (UH@D)( ), dpp(x)(Unt)(x))

By the spectral theorem, \\
) /]R d{Epyup, P, Pp)

PB@Z},(P%Z Ppyp) = T _
4 = /]R L d(PpEp,up, P, 1) .

r—z

O

Proof of Theorem /.1. Let us define the meas re ,u,ﬂ)
ce

y, _ / L (U (@), dps (@) U ()}

o x—z

m&&@e second equality in the theorem we apply again Lemma 4.2 to obtain that

b (Pptp, (PsHPg — 2)" ' Ppyp) = /]R - i p, d(PsEpyrp, Py, )

\ s |
I

r— =z

d{Ew(x)Ppy, Ppi) .

We finish the proof by using Lemma 4.3. O
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Let Hy be a self-adjoint operator defined on H with spectrum of finite multiplicity N.

Define

H, = Ho + k[{)(¥)]

where ¢ a normalized vector on ‘H and x € R. Let Uy, be a uni operator and u a
matrix measure distribution defined on R such that Uy, HoU 1501 %IP(R, CN,dp).
Now we can present a useful result about almost exponential*deéay. It will be applied

in next section to Sturm-Liouville operators.

J
Theorem 4.2. a) Assume that Hy has a simple é e‘rb@l% o embedded in some
continuous spectrum. Precisely, —

al) Hop = Aoy , [l¢ll = 1. l
a2) There exists an open interval I of Reawithadpu = v(N)d\ + Mdy, , o € I
where for each X € I, v(\) is a ndp-negalive matriz and M is a constant

non-negative matriz of rank one.
b) The map A — ( (Ugy)(N), YN (Upge)) (A9is €1 (1), with 0 < a < 1.

c) For ¢ and ¥ we assume that i&\\

(o, V) = (Unop, Uny¥)r2 %\ Uno¥) (M), 7 (A0) (Ung %) (Ao))ev - # 0.
Then there exists an open interval J N)\g 4 J C I such that
(1) Forallk #0 , 0,(H,) N $\j C 04e(Hy).
(2) Given g a smooth ch ristic function supported on J which is identically 1 in
a neighborhood of Ay, weSagvésthat for allt € R and all kK # 0 but small enough
with (. and cd de

e g(Hi)p) = cee™ M 1 R(t, v)
%z’n Theorem 2.1.
In particular, %% c': =A+0(x?) and |R(t, k)| < Ck*. Moreover, |t||R(t, k)| < Cr>*,
if « € (0,1) an (t, < Cr?|log |K||, if a = 1.

Remark 4.3 % normalized vector d such that Ran(M) = Cud and

1
U = u.
/ 4 1P = T M en 0
-

Now, we cdu use the tools we have developed to prove the theorem.

-

0of. A?plying Theorem 4.1 with B =R\ {\¢} and p = p we obtain

i [ U, N) Ut (A)evd
S (e PHHE - = | UM

Then (1) follows applying Theorem 3.2, taking into account that
SFy(Ao +10) = (@, PH(Hy — Ao — i0) " PH) = ((Une ) (M), ¥ (Ao) (Ury ) (No)) e
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and (2) follows from Theorem 3.3 together with Theorem 6.1. O

5. A STURM LIOUVILLE MODEL WITH AN EMBEDDE?/EIGENVALUE

First let us construct an operator acting on functions defin ‘Uﬁ%&@lf axis Rt which
has an embedded eigenvalue. The function

h(x) :=cosz + ksinz \

is solution of the initial value problem

R &Q
. Let us define
xﬁ- ]

R2(t)dt

The operator Ly (N stands for the
subspace of Ly(R™) generated by

1 boundary condition) acting on a dense

W+ 0<z<o0
has the following spectral f nct | p. 46:
(32) )+ ks(A—1)
where s(t : %nd p(\) is the spectral function of the operator Ly generated by
lou) r) = —u", 0<z<o0
u'(0) = ku(0)
that is
/3
dp(r) = (A+k2)d/\ if A>0
0 if A<0
See ZBT T herefore the point 1 is an embedded eigenvalue for the operator Ly.

operator Ly defined as above will take the place of Hy in Theorem 4.2. This operator
satlsﬁe hypothesis al) and a2) of that theorem. Fix a vector ¢ € L?(RT), RT = {z € R :
> (0}.) Consider the perturbed operator

\ I Hy. = Ly + £l9) (]

et O C R an open interval such that \y = 1 € O. To verify hypothesis b) of Theorem 4.2
e shall find an interval I C R* such that the eigenvalue \g = 1 € I and |Up,%()\)[?5()) is in
Ch(I) with 0 < o < 1.
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The unitary operator Uy, is given by the transform
U = [t d

where w(t, A) is a solution of the eigenvalue problem /\
) F1

—u" +q(x)u = w(0,\)=0,u' (0,

for any A € C. The function w(¢, \) is an entire function of .

If we choose 1 to be of compact support then (Ur,%)(X) ijj’m\?ince p € C>®(0) then
|(ULy)(N)[2p(N) € C°°(O) and therefore there is an open‘iut I containing \g = 1 such
that |(Ury¥)(V)|2p(\) € CH2(I), so condition b) in Thegrem 4.2s satisfied.

To realize condition ¢) of Theorem 4.2 we can take for nstanéj: P(t) = xa(t)w(t,1) where A
is an open interval. So,
(Wrye)(1 / &-mzﬂ%y 0
and therefore
ULNw

Since p(1) = y > 0. Moreover

S
(s )3 = ULy, ULNT/J 2 1} (@) (ULy ) (z)dpn ()
ULNlb )N ({1}) = (ULy)(1)k # 0.

6. BOUN R IT OF BOREL TRANSFORMS

Let I C R be an open jfitervaland consider a measure yuy : B — RT defined on the Borel sets
B of R such that p; restricted to ¥ is absolutely continuous with respect to Lebesgue measure,
i.e. there exists a m sur&ble ction f: R — R* such that for any Borel set A C I, it holds

that
/ / [ #@riz = ua).
Assume mo )\ \

vér that f € CL(I), that is, f € CY(I) with f/ a—Holder continuous on I,
0 < a < LfWe write §(z) for the corresponding Borel transform associated to the measure ur,

y
=~ 5 = [ 2D g0

r—z

ing)esults assures the existence and the smoothness of the boundary values lim,_,o+ F(A+
] [7],[11].

6.1. Let I C R be an open interval and py the measure defined above. Then
F(XA) := lim §(\ + ie)
e—0t

exists and F € CY(I). Moreover for any interval J such that J C I, the function F' is 3-Hélder
continuous in J for all B < «., that is, F' € CI’B(J) .
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Proof. Let K be an open subinterval such that J ¢ K ¢ K & I and let us define n € C3°(R, [0, 1])
with n(x) =0 if z ¢ K and n(x) =1 if z € J. For any z € C with Sz # 0,

s = [ L) gy [ Oone),

K xr —Zz

J xr—z

If Re z € J the second integral in the above equality represents ho Inorp ic function, there-
fore this term is C''(I) and a-Holder continuous in any subinterva w1th JclI. (Recall that
continuously differentiable function on compact sets of the rea e v-Holder continuous

with 0 <y <1).
Now let us study the first term. Setting z = A + ie, i

f(@)n(x) .
/K()g,d:z:%Q\, +z§b\,e)

where & ‘)
. f@)n(z)(z — >\) [ _ef(@)n(z)
R\ €): / @ x,\}%‘?y A m dx .

Since fn € C}(R) we obtain that I()\ : F(A)n(A), see [28] Lemma 2.3 i)
p.41, SOI()\)gC’O( R). \

is a-Hélder and thus S-Hélder inJ with 8 < a.
d fif € CL(I) and therefore a-Hélder in J and

|f'(x)n(z) — &n(x)(f’(x) — @)+ 1(n(z) = n) f (v)]

o
+
—~
>
[
S~—
I
=

Moreover, the derivative I’
This follows because (fn)

\A

Mz —y[*

because f’ is a-Holder dn .
Now let us considet R(N) := lim,_,q+ RR(\, €). This limit exists because fn € C¢ and therefore
fnis a- Holder coninuofis W compact support, see Lemma 10 in[6]. Moreover,

\ v [ TO0D g0
R

where P. s the integral in the sense of principal value and $) stands for the Hilbert
transfo e Lemma 2.5, p.5land [11]. Since fn € C! and fn € L, one deduces
that (£ ) = H[(fn)](N), see [27] Theorem 1 and formula 3.24. Using again Privaloft-
Ko ’§"'The n(; Lemma 10 in[6] and the a-Holder continuity of (f7)" we finally obtain that

-Hélder continuous and thus (R(A)) is f-Hoélder continuous. O

VIV
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