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Abstract. We study resonances generated by rank one perturbations of selfadjoint
operators with eigenvalues embedded in the continuous spectrum. Instability of these
eigenvalues is analyzed and almost exponential decay for the associated resonant states
is exhibited. We show how these results can be applied to Sturm-Liouville operators.
Main tools are the Aronszajn-Donoghue theory for rank one perturbations, a reduction
process of the resolvent based on Feshbach-Livsic formula, the Fermi golden rule and a
careful analysis of the Fourier transform of quasi-Lorentzian functions. We relate these
results to sojourn time estimates and spectral concentration phenomena

1. Introduction

The resonance phenomenon appears in several areas of physics and mathematics such
as Classical, Quantum and Wave Mechanics. Several attempts have been done to give it
a precise mathematical description. We refer to [31] for a discussion about the difficulties
arising in characterizing rigorously the concept of resonance for autonomous systems in
Quantum Mechanics.

One of the most fruitful approaches consists in defining quantum resonances as poles
of a suitable meromorphic continuation of the Hamiltonian resolvent, from the upper
half complex plane to the lower half plane. Each pole appears as an ”eigenvalue” with
negative imaginary part, corresponding to generalized eigenfunctions outside the Hilbert
space. There is a huge literature on this subject and we refer the reader to [17] and
references therein.

Resonances can also be characterized in terms of time exponential decay of the time
evolution of the system governed by the Hamiltonian (defined as a self-adjoint operator on
some Hilbert space H). This behaviour can be traced by means of the survival probability
Pφ for some suitable states φ. This quantity defined by

Pφ(t) = |⟨φ, e−iHtφ⟩|2 ,
measures the probability of finding at time t the system governed by the Hamiltonian H
in its initial state φ. On one hand, we know that exact exponential decay is impossible
for many models of physical interest, see e.g. [31]. On the other hand, if z = λ − iΓ
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(Γ > 0) is a pole of the resolvent of the Hamiltonian H with ”resonant eigenfunction” φ
(i.e. Hφ = zφ), we would formally expect that,

Pφ(t) = e−2Γt∥φ∥2 ,
which is incorrect if the resonant eigenfunction φ does not belong to the Hilbert space.
Thus, in presence of a resonance z, the best one can hope is the existence of a state ψ ∈ H
such that the quantity ⟨ψ, e−iHtψ⟩ behaves approximately as e−izt. Both these quantities
equal 1 at t = 0 and in most cases of interest, both approach to zero as t tends to ∞.
The main objective is then to estimate the difference,

⟨ψ, e−iHtψ⟩ − e−izt ,

for t not to close to 0 nor to ∞.

For differential operators on the real half line, this difference can be estimated uniformly
in time [23] or in L2 norm [3] by means of ODE techniques. In these cases, the function ψ
is a truncated resonant eigenfunction. Pointwise estimates have been exhibited when the
resonance appears with the perturbation of an instable simple eigenvalue embedded in
some continuous spectrum, see e.g. [9] and [20] for a review. The main ingredients are in
that case the Feshbach-Livsic reduction and the Fermi Golden rule. In [9], this approach
is actually combined with some positive commutator techniques (Mourre theory) and the
estimates are obtained once the eigenfunction is localized in energy. For an approach with
vanishing Fermi Golden Rule constant, see [10].

The consistent use of the Feshbach-Livsic reduction to study resonances can be traced
back at least to [18] and has been a source of several results in the last decades in different
areas. In particular, it has been used consistently in spectral theory for Non-Relativistic
Quantum Electrodynamics since [4] and [5]. For the relationship between time evolution
(the perspective we address in this paper) and poles of the resolvent in the context of
analytic perturbation theory, see also [16], [14] and references therein.

In this paper, we adapt the Feshbach-Livsic reduction to the context of differential
operators on the real half line and pointwise estimates are exhibited when the resonance
appears with the perturbation of an instable simple eigenvalue embedded in the absolutely
continuous spectrum of such operators. Although various tools developed here can be
easily adapted to a fairly wide class of perturbations, we have decided to narrow our
discussion to the rank-one case and to relate these results with classical results in this
field [13], [30]. We intend to propose several extensions in a forthcoming paper.

We start in Section 2 by establishing conditions which ensure that the Fourier transform
of a Lorentz-like function exhibits approximate exponential time decay. The proof of
Theorem 2.1 is based on techniques of classical analysis, we have mainly singled out from
[9]. The development of this section is independent from the rest of the paper. In Section
3, we turn our attention on rank one perturbations of the form

Hκ = H0 + κ|ψ⟩⟨ψ| ,
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where H0 has a simple eigenvalue embedded in some absolutely continuous spectrum. In
Theorems 3.1 and 3.2, we show how the instability of the embedded eigenvalue and the
spectral properties of the operators Hκ are related to the boundary values of the reduced
resolvent of H0 and the Fermi Golden Rule. Next, we prove Theorem 3.3, which formalizes
the existence of a resonance in term of almost exponential decay in the case of rank
one perturbations under suitable hypotheses on the reduced resolvent of H0. The proof
combines the Feshbach-Livsic reduction process and Krein’s formula with Theorem 2.1.
Corollary 3.1 discusses the relationships with Kato’s spectral concentration. In Corollary
3.2, we deduce the asymptotics for the sojourn time of the corresponding eigenstate under
the evolution governed by Hκ for small values of κ. Finally, we show in Section 4, how the
boundary properties of the reduced resolvent of H0 can be deduced from the properties
of the spectral measure of H0 when it has finite multiplicity. This reformulation of the
problem is summed up in Theorem 4.2 and its proof makes essential use of the properties
of the Borel transform, see Section 6. All these results are illustrated in Section 5 by a
Sturm-Liouville model. In contrast with [9], the point of view developed in this paper
does not require any positive commutator techniques.

We shall use the notation C1,β(I) for the set of functions with first derivative β- Hölder
continuous in I. Given a function of complex variable F (z), we write F (λ + i0) for
limϵ↓0 F (λ+iϵ). For the spectral family of orthogonal proyections of an operator T we shall
write ET and ρ(T ), σ(T ), σp(T ), σsc(T ), σac(T ) denote the resolvent, the spectrum, the
eigenvalues, the singular continuous and absolutely continuous spectra of T respectively
[29]. The characteristic function of a Borel set ∆ will be denoted as usual by χ∆(x) where
χ∆(x) = 1 if x ∈ ∆ and 0 if x /∈ ∆. R stands for the real numbers, R+ the non negative
reals and C for the complex numbers. ℑz,ℜz stand for the imaginary and real parts of z.

2. Almost exponential decay

Theorem 2.1 is the main result of this section and it is the first ingredient in the analysis
developed in this paper. It provides some estimates on the Fourier transform of families
of Lorentz-like functions defined on R by:

λ 7→ g(λ)ℑ
(

1

λκ − λ− κ2F (λ, κ)

)
,

with κ ∈ [−κ0, κ0] for some κ0 > 0 and under suitable assumptions set on the functions
g, F and the family of real numbers (λκ)κ∈[−κ0,κ0]. In the following, g ∈ C∞

0 (R) is real-
valued, compactly supported on (a, b) for some −∞ < a < b < ∞, and we also assume
that 0 ≤ g ≤ 1 and g ≡ 1 on [a0, b0] for some a < a0 < b0 < b. In addition,

(H0) (a) limκ→0 λκ = λ0, λ0 ∈ (a0, b0),
(b) the complex-valued function F is bounded on [a, b]× [−κ0, κ0] and continuous

at the point (λ0, 0),
(H1) for any κ ∈ [−κ0, κ0], the function F (·, κ) is C1 on [a, b] and
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(a) the function F ′ := ∂λF is bounded on [a, b]× [−κ0, κ0],
(b) for any κ ∈ [−κ0, κ0], the function F (·, κ) is C1,α on [a0, b0], uniformly in

κ ∈ [−κ0, κ0] for some α ∈ (0, 1],
(H2) for any κ ∈ [−κ0, κ0], infλ∈[a0,b0]ℑF (λ, κ) > 0.

Remark: In Assumption (H1), F ′
κ is defined at a and b by taking the corresponding

lateral derivatives. If the function F is continuous in both variables on [a, b]× [−κ0, κ0],
it is necessarily bounded. Note finally that if ℑF (λ0, 0) > 0 and F is continuous at the
point (λ0, 0), we can deduce the existence of an interval [a0, b0], on which (H2) holds for
small values of κ. The condition ℑF (λ0, 0) > 0 is known as the Fermi Golden Rule.

We have that:

Theorem 2.1. Assume (H0), (H1) and (H2) hold. Then, given any 0 < δ < min(|λ0−
a0|, |b0 − λ0|, 1), and κ ̸= 0 small enough,

(a) there exists a unique solution in [a0, b0] to the equation: λ = λκ − κ2ℜFκ(λ),
denoted by λ∞κ , which satisfies: |λ∞κ − λκ| ≤ Cκ2 for some C > 0 and a0 + δ ≤
λ∞κ ≤ b0 − δ,

(b) for all t ∈ R,

(1)
1

π

∫ ∞

−∞
dλ e−iλtg(λ)ℑ

(
1

λκ − λ− κ2F (λ, κ)

)
= cκ e

−iζκ|t| +R(t, κ)

where c−1
κ = 1 + κ2F ′(λ∞κ , κ),

(2) ζκ = λ∞κ − iκ2cκℑF (λ∞κ , κ) ,

and the error term R(t, κ) satisfies: |R(t, κ)| ≤ Cκ2 if α ∈ (0, 1], |t||R(t, κ)| ≤ Cκ2α if
α ∈ (0, 1) and |t||R(t, κ)| ≤ Cκ2| ln |κ|| if α = 1.

Remark 2.1. By combining (3) and Hypothesis (H0) in Theorem 2.1, we also deduce
that: limκ→0ℜζκ = λ0 and

lim
κ→0

1

κ2
ℑζκ = −ℑF (λ0, 0) < 0 .

In particular we obtain using (2) that

lim
κ→0

λ∞κ −ℜζκ
κ2ℑF (λ∞κ , κ)

= 1 and lim
κ→0

ℑζκ
κ2ℑF (λ∞κ , κ)

= −1 .(3)

Remark 2.2. The model for the integral described in Theorem 2.1 is the Fourier transform
of Lorentzian functions. Let µ ∈ R and Γ > 0. Then for any λ ∈ R,

ℑ( 1

µ− λ− iΓ
) =

Γ

(λ− µ)2 + Γ2

and for any t ∈ R,
1

π

∫ ∞

−∞
dλ e−iλtℑ

(
1

µ− λ− iΓ

)
= e−i(µ−iΓ)|t| ,
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which decays exponentially at infinity. This observation is one of the key to the proof of
Theorem 2.1.

Remark 2.3. Theorem 2.1 is closely related to Lemma 2.16 in [10]. The regularity of the
function F is assumed to be the same in both cases and the main idea is also based on
subtracting a cleverly chosen Lorentzian and carefully estimating the remainder. While
the time independent estimate in Lemma 2.16 in [10] covers the case of vanishing Fermi
Golden Rule constant, the Theorem 2.1 provides a more precise time-decaying control on
the remainder term, which is actually required to estimate the sojourn time (Corollary
3.2).

The strategy for the proof of Theorem 2.1 follows essentially [9]. The fixed point
argument has been borrowed to [22].

2.1. Proof of Theorem 2.1. For simplicity, let us write for any (λ, κ) ∈ [a, b]×[−κ0, κ0],
D(λ, κ) = λκ− λ− κ2F (λ, κ). Due to Hypothesis (H2), we have that for any λ ∈ [a0, b0],
0 < |κ| ≤ κ0, |D(λ, κ)| ≥ κ2 infλ∈[a0,b0] ℑFκ(λ) > 0. Now, fix δ1 ∈ (0,min(|λ0 − a0|, |b0 −
λ0|, 1)). According to Hypotheses (H0) and (H1)(a), we can pick 0 < κ1 ≤ κ0 such that:

• Ran (λκ − κ2ℜF (·, κ)) ⊂ [a0 + δ1, b0 − δ1], for any |κ| ≤ κ1,
• κ21 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F

′(λ, κ)| ≤ 1− δ1.

In particular, for any λ ∈ [a, a0] ∪ [b0, b], |κ| ≤ κ1, |D(λ, κ)| ≥ |λκ − λ− κ2ℜFκ(λ)| ≥ δ1.
This allows us to define the function G for λ ∈ [a, b] and 0 < |κ| ≤ κ1 by: G(λ, κ) =
D(λ, κ)−1 and then to give a sense to the integral

(4) I(t, κ) = 1

π

∫ ∞

−∞
dλ e−iλtg(λ)ℑ

(
1

λκ − λ− κ2F (λ, κ)

)
,

for t ∈ R and 0 < |κ| ≤ κ1. Since I(−t, κ) = I(t, κ), it is enough to prove Theorem 2.1
for t ≥ 0 and 0 < |κ| ≤ κ1. The proof consists in adding and subtracting the Lorentz-like
function ℑG1 (which is explicited later on) on the interval [a0, b0] and reduces the problem
to study

I1(t, κ) :=
1

π

∫ b0

a0

dλ e−iλtℑG1(λ, κ) .

This integral contributes to the quasi-exponential behaviour term in (1) while the remain-
der terms contribute to the error term R.

Given δ1 as before and |κ| ≤ κ1, we define first by a fixed point argument the real
number λ∞κ for κ ∈ [−κ1, κ1]:

Lemma 2.1. Given any κ ∈ [−κ1, κ1], there is a unique solution to the equation: λ =
λκ − κ2ℜF (λ, κ) in [a0, b0]. Actually, if λ∞κ denotes this solution, we have that: λ∞κ ∈
[a0 + δ1, b0 − δ1] and |λ∞κ − λκ| ≤ κ2 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F (λ, κ)|.
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Proof. By hypothesis, for any |κ| ≤ κ1, κ
2 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F

′(λ, κ)| < 1 and Ran

(λκ − κ2ℜF (·, κ)) ⊂ [a0 + δ1, b0 − δ1]. Therefore, given such κ ∈ [−κ1, κ1], the function
λ 7→ λκ − κ2 ℜF (λ, κ) maps [a0, b0] (resp. [a0 + δ1, b0 − δ1]) on itself and is strictly
contractive. So, we apply the Banach fixed point theorem, and the conclusions follow. �

This proves statement (a) of Theorem 2.1. Now, let us define for any λ ∈ [a0, b0],
|κ| ≤ κ1,

D̂(λ, κ) = λκ − λ− κ2F (λ∞κ , κ) = λ∞κ − λ− iκ2ℑF (λ∞κ , κ)
D1(λ, κ) = λκ − λ− κ2F (λ∞κ , κ)− κ2F ′(λ∞κ , κ)(λ− λ∞κ )

= λ∞κ − λ− iκ2F (λ∞κ , κ)− κ2F ′(λ∞κ , κ)(λ− λ∞κ )

Note that by Hypothesis (H2), ℑD̂(λ, κ) = −κ2ℑF (λ∞κ , κ) < 0 as soon as κ ̸= 0. This

allows us to define the function Ĝ for λ ∈ [a0, b0], 0 < |κ| ≤ κ1 by Ĝ(λ, κ) = D̂(λ, κ)−1.
For λ ∈ [a0, b0] and |κ| ≤ κ1, we also have that:

|D1(λ, κ)| ≥ |λ∞κ − λ− iκ2F (λ∞κ , κ)| − κ2

(
sup

(λ,κ)∈[a0,b0]×[−κ0,κ0]
|F ′(λ, κ)|

)
|λ∞κ − λ|

≥

(
1− κ2 sup

(λ,κ)∈[a0,b0]×[−κ0,κ0]
|F ′(λ, κ)|

)
|D̂(λ, κ)| ≥ δ1|D̂(λ, κ)| .(5)

In particular, for λ ∈ [a0, b0] and 0 < |κ| ≤ κ1, we define the function G1 by G1(λ, κ) =
D1(λ, κ)

−1 and it holds:

|G1(λ, κ)| ≤ δ−1
1 |Ĝ(λ, κ)| .

Finally, for (λ, κ) ∈ [a0, b0]× [−κ0, κ0], D(λ, κ) = λ∞κ − λ− iκ2ℑF (λ∞κ , κ)− κ2(F (λ, κ)−
F (λ∞κ , κ)). Hence, for λ ∈ [a0, b0] and |κ| ≤ κ1, we obtain via the Mean Value Theorem
that:

|D(λ, κ)| ≥ |λ∞κ − λ− iκ2F (λ∞κ , κ)| − κ2

(
sup

(λ,κ)∈[a0,b0]×[−κ0,κ0]
|F ′(λ, κ)|

)
|λ∞κ − λ|

≥

(
1− κ2 sup

(λ,κ)∈[a0,b0]×[−κ0,κ0]
|F ′(λ, κ)|

)
|D̂(λ, κ)| ≥ δ1|D̂(λ, κ)| .(6)

In particular, for λ ∈ [a0, b0] and 0 < |κ| ≤ κ1, it holds:

|G(λ, κ)| ≤ δ−1
1 |Ĝ(λ, κ)| .

http://dx.doi.org/10.1063/1.4989882


RESONANCES RANK ONE 7

Recall that the function g vanishes outside [a, b] and g ≡ 1 on [a0, b0]. So, we can write
for t ∈ [0,∞), 0 < |κ| ≤ κ1, I(t, κ) = I1(t, κ) + I2(t, κ) + I∂(t, κ) where

I2(t, κ) :=
1

π

∫ b0

a0

dλ e−iλtℑ (G(λ, κ)−G1(λ, κ)) ,

I∂(t, κ) :=
1

π

∫ a0

a

dλ e−iλtg(λ)ℑG(λ, κ) + 1

π

∫ b

b0

dλ e−iλtg(λ)ℑG(λ, κ) .

It remains to perform the analysis of each term.

Step 1. We start with the term I1. We write for λ ∈ [a0, b0], 0 < |κ| ≤ κ1,

ℑG1(λ, κ) =
1

2i

(
1

bκ − aκλ
− 1

bκ − aκλ

)
,

where aκ := 1 + κ2F ′(λ∞κ , κ) and bκ := λ∞κ aκ − iκ2ℑFκ(λ∞κ ) = λκ + κ2(λ∞κ F
′(λ∞κ , κ)) −

F (λ∞κ , κ)). Note that δ1 ≤ 1 − κ2 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F
′(λ, κ)| ≤ |aκ| for any |κ| ≤ κ1.

Now, for 0 < |κ| ≤ κ1, we consider the function g1(·, κ) defined by

(7) g1(z, κ) =
1

2i

(
1

bκ − aκz
− 1

bκ − aκz

)
,

which is meromorphic in the complex plane, with poles at ζκ and ζκ:

ζκ = λ∞κ − iκ2
ℑF (λ∞κ , κ)

aκ
.

In particular, for λ ∈ [a0, b0], 0 < |κ| ≤ κ1, g1(λ, κ) = ℑG1(λ, κ). Note that for any
0 < |κ| ≤ κ1,

|λ∞κ −ℜζκ|
|ℑζκ|

}
≤ κ2 δ−1

1 ℑF (λ∞κ , κ) ≤ κ2 δ−1
1 sup

(λ,κ)∈[a0,b0]×[−κ0,κ0]
|F ′(λ, κ)| .(8)

Explicit calculations also yield:

ℑζκ = −κ2(1 + κ2ℜF ′(λ∞κ , κ))
ℑF (λ∞κ , κ)

|aκ|2
.

Once observed that for 0 < |κ| ≤ κ1, δ1 ≤ 1 − κ2 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F
′(λ, κ)| ≤ 1 +

κ2ℜF ′(λ∞κ , κ), we also deduce that:

ℑζκ ≤ −κ2δ1
ℑF (λ∞κ , κ)

(1 + κ21 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F ′(λ, κ)|)2
< 0 .

In other words, for any 0 < |κ| ≤ κ1, the pole ζκ lies in the lower half-plane and:

−κ2 δ−1
1 ℑF (λ∞κ , κ) ≤ ℑζκ ≤ −κ2δ1

ℑF (λ∞κ , κ)
(1 + κ21 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F ′(λ, κ)|)2

< 0 .
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Now, fix 0 < δ′1 < δ1 and 0 < κ′1 ≤ κ1 such that: κ′21 sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F
′(λ, κ)| ≤

δ′1δ1. In view of the bound (8) and the fact that λ∞κ ∈ [a0+δ1, b0−δ1] for any 0 < |κ| ≤ κ1,
this implies that for any 0 < |κ| ≤ κ′1, ℜζκ ∈ [a0 + (δ1 − δ′1), b0 − (δ1 − δ′1)]. Let γ be a
fixed smooth curve in the lower half plane, joining the endpoints of the interval [a0, b0]
and staying at positive distance from the closure of the bounded sets {ζκ; 0 < |κ| ≤ κ′1}
and {ζκ; 0 < |κ| ≤ κ′1}. Then, for 0 < |κ| ≤ κ′1, the closed curve J ∪ γ enclose only the
pole ζκ and so,

(9)
1

π

∮
J∪γ−

e−iztg1(z, κ) dz = cκe
−iζκt ,

with cκ = a−1
κ . Therefore,

(10) I1(t, κ) =
1

π

∫ b0

a0

e−iλtℑG1(λ, κ) dλ = cκ e
−iζκt +

1

π

∫
γ

e−iztg1(z, κ) dz

Now, for all z ∈ γ, g1(z, κ) = κ2h1(z, κ) where

h1(z, κ) =
pκz + qκ

|aκ|2(z − ζκ)(z − ζκ)
,

with pκ = ℑF ′(λ∞κ , κ) and qκ = ℑF (λ∞κ , κ)− λ∞κ ℑF ′(λ∞κ , κ).

By construction, infz∈γ,0<|κ|≤κ′1 |z − ζκ| > 0 and infz∈γ,0<|κ|≤κ′1 |z − ζκ| > 0, so the func-
tions h1(·, κ) are analytic in some fixed open region containing γ for any 0 < |κ| ≤ κ′1.
Once combined with Hypotheses (H0)(b) and (H1)(a), this implies that supz∈γ,0<|κ|≤κ′1 |h1(z, κ)| <
∞ and supz∈γ,0<|κ|≤κ′1 |h

′
1(z, κ)| <∞.

Now, note that for any t ≥ 0 and any z ∈ γ, |e−izt| ≤ 1, since the curve γ is contained
in the lower half plane. We have that for any t ≥ 0 and 0 < |κ| ≤ κ′1,∣∣∣∣∫

γ

e−iztg1(z, κ) dz

∣∣∣∣ ≤ Cκ2 ,(11) ∣∣∣∣∫
γ

e−iztg′1(z, κ) dz

∣∣∣∣ ≤ Cκ2 .(12)

for some C > 0.

Step 2. In order to conclude, first define for t ≥ 0 and 0 < |κ| ≤ κ′1,

R(t, κ) := I(t, κ)− cκ e
−iζκ|t| = (I1(t, κ)− cκ e

−iζκ|t|) + I2(t, κ) + I∂(t, κ)(13)

=
1

π

∫
γ

e−iztg1(z, κ) dz + I2(t, κ) + I∂(t, κ) ,

due to (10). According to (11), Corollary 2.1 and Proposition 2.1, all the terms on the
RHS are of order κ2 (for κ small enough), which yields our first estimate on R.
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Now, note that integration by parts yields for t ≥ 0 and 0 < |κ| ≤ κ′1,∫
γ

e−iztg′1(z, κ) dz = it

∫
γ

e−iztg1(z, κ) dz + e−ib0tℑG1(b0, κ)− e−ia0tℑG1(a0, κ) ,∫ b0

a0

dλ e−iλtℑ (G′(λ, κ)−G′
1(λ, κ)) = it

∫ b0

a0

dλ e−iλtℑ (G(λ, κ)−G1(λ, κ))

+ e−ib0tℑ (G(b0, κ)−G1(b0, κ))

− e−ia0tℑ (G(a0, κ)−G1(a0, κ))∫ a0

a

dλ e−iλt(g(λ)ℑG(λ, κ))′ = it

∫ a0

a

dλ e−iλtg(λ)ℑG(λ, κ) + e−ia0tℑG(a0, κ) ,∫ b

b0

dλ e−iλt(g(λ)ℑG(λ, κ))′ = it

∫ b

b0

dλ e−iλtg(λ)ℑG(λ, κ)− e−ib0tℑG(b0, κ) ,

where we have used g(a) = 0 = g(b) and g(a0) = 1 = g(b0). It follows from (13) that for
t ≥ 0 and 0 < |κ| ≤ κ′1,

(14) itR(t, κ) = J1(t, κ) + J2(t, κ) + J∂(t, κ) ,

where

J1(t, κ) =
1

π

∫
γ

e−iztg′1(z, κ) dz

J2(t, κ) =
1

π

∫ b0

a0

dλ e−iλtℑ (G′(λ, κ)−G′
1(λ, κ))

J∂(t, κ) =
1

π

(∫ a0

a

dλ e−iλt(g(λ)ℑG(λ, κ))′ +
∫ b

b0

dλ e−iλt(g(λ)ℑG(λ, κ))′
)
.

According to (12) and Proposition 2.1, the first and third terms on the RHS of (14) are
of order κ2. In view of Corollary 2.2, the second one is of order κ2α (resp. κ2| log |κ||) if
α ∈ (0, 1) (resp. if α = 1). This completes the proof of statement (b).

The last part of Theorem 2.1 is a direct consequence of formula (2).

2.2. Technicalities. In this section, the results are stated under Hypotheses (H0), (H1)
and (H2). The quantities δ1 ∈ (0,min(|λ0 − a0|, |b0 − λ0|, 1)) and 0 < κ1 ≤ κ0 are fixed
according to conditions explicited in the proof of Theorem 2.1.

First, we provide upper bounds on the terms I∂ and J∂:

Proposition 2.1. There exists C > 0 such that for all t ∈ R, 0 < |κ| ≤ κ1, |I∂(t, κ)| ≤
Cκ2 and |J∂(t, κ)| ≤ Cκ2.
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Proof: We deduce from Lemma 2.1 that for all λ ∈ [a, a0], |κ| ≤ κ1, |D(λ, κ)| ≥ a0+ δ1−
λ ≥ δ1 > 0. On the other hand, for λ ∈ [a, a0], 0 < |κ| ≤ κ1,

(15) ℑG(λ, κ) = κ2
ℑF (λ, κ)
|D(λ, κ)|2

In view of (H0)(b), we deduce that for t ∈ R, 0 < |κ| ≤ κ1,∣∣∣∣∫ a0

a

dλ e−iλtg(λ)ℑG(λ, κ)
∣∣∣∣ ≤ κ2 sup

λ∈[a,a0]
|ℑF (λ, κ)|

∫ a0

a

dλ

(a0 + δ1 − λ)2
≤ Cκ2 .

For all λ ∈ [a, a0], 0 < |κ| ≤ κ1, (gℑG)′ = g′ℑG+ gℑG′ and we deduce from (15) that

ℑG′(λ, κ) = κ2
ℑF ′(λ, κ)

|D(λ, κ)|2
− 2κ2

ℜ(D(λ, κ)D′(λ, κ))ℑF (λ, κ)
|D(λ, κ)|4

with D′(λ, κ) = −1− κ2F ′(λ, κ). It follows that for t ∈ R, 0 < |κ| ≤ κ1,∣∣∣∣∫ a0

a

dλ e−iλt(g(λ)ℑG(λ, κ))′
∣∣∣∣ ≤ κ2

∫ a0

a

dλ
g(λ)|ℑF ′(λ, κ)|+ |g′(λ)||ℑF (λ, κ)|

(a0 + δ1 − λ)2

+ 2κ2
∫ a0

a

dλ g(λ)
(1 + κ2|F ′(λ, κ)|)|ℑF (λ, κ)|

(a0 + δ1 − λ)3

≤ Cκ2 ,

in view of Hypotheses (H0)(b) and (H1)(a). A similar procedure applies to the term∫ b

b0

dλ e−iλtg(λ)ℑG(λ, κ)

and the conclusion of the proposition follows. �
Now, we provide some upper bounds on the terms I2 and J2, which rely on the following

lemma:

Lemma 2.2. Let (α, β) ∈ [0,∞)2, 0 < |κ| < κ1 and zκ = λ∞κ − iκ2ℑF (λ∞κ , κ) =
λκ − κ2F (λ∞κ , κ). There exist C > 0 and 0 < κ2 ≤ κ1, such that for any 0 < |κ| ≤ κ2,∫ b0

a0

|λ−ℜzκ|α

|λ− zκ|β
dλ ≤

 Cκ2(α−β+1) if α− β + 1 < 0
C| log |κ|| if α− β + 1 = 0
C if α− β + 1 > 0

Proof. We start with some preliminary remarks. By Lemma 2.1, ℜzκ = λ∞κ ∈ [a0+δ1, b0−
δ1] for any 0 < |κ| ≤ κ1. Lemma 2.1 and Hypothesis (H0)(a) also imply: limκ→0 λ

∞
κ = λ0.

Finally, ℑzκ = −iκ2ℑF (λ∞κ , κ) < 0 due to (H2). Since F is continuous at (λ0, 0), we
obtain that:

lim
κ→0

ℑzκ
κ2

= −ℑF (λ0, 0) < 0 .
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So, given 0 < δ2 < ℑF (λ0, 0), we can fix 0 < κ2 ≤ κ1, such that for any 0 < |κ| < κ2,

(16) −κ2 sup
(λ,κ)∈[a0,b0]×[−κ0,κ0]

|F (λ, κ)| ≤ ℑzκ ≤ −κ2δ2 .

Now, with the change of variables λ−ℜzκ = µ|ℑzκ|, we obtain that:∫ b0

a0

|λ−ℜzκ|α

|λ− zκ|β
dλ = |ℑzκ|α−β+1

∫ bκ

aκ

|µ|α

(µ2 + 1)
β
2

dµ

where

aκ =
ℜzκ − a0
|ℑzκ|

and bκ =
ℜzκ − b0
|ℑzκ|

We denote γ = α− β.

Case γ ̸= −1. We split the integral, integrating on the intervals [aκ,max(−1, aκ)],
[max(−1, aκ),min(1, bκ)] and [min(1, bκ), bκ]. On the interval [max(−1, aκ),min(1, bκ)],
the integral is bounded by the same integral on [−1, 1] for which we observe that the
integrand is bounded by |µ|α ≤ 1. This term is finally bounded by 2|ℑzκ|γ+1. The
integral on [min(1, bκ), bκ] is bounded by:

|ℑzκ|γ+1

∫ bκ

1

|µ|α

(µ2 + 1)
β
2

dµ ≤ |ℑzκ|γ+1

∫ bκ

1

µγdµ =
(b0 −ℜzκ)γ+1

(γ + 1)
− |ℑzκ|γ+1

γ + 1
.

We manage the integral on the interval [aκ,max(−1, aκ)] analogously. Estimates for the
case γ ̸= −1 follows now from (16).

Case γ = −1. We split again the integral, integrating on the intervals [aκ,max(−1, aκ)],
[max(−1, aκ),min(1, bκ)] and [min(1, bκ), bκ]. On the interval [max(−1, aκ),min(1, bκ)],
the integral is bounded by the same integral on [−1, 1], which is bounded by 2. The
integral on [min(1, bκ), bκ] is bounded by:∫ bκ

1

|µ|α

(µ2 + 1)
β
2

dµ ≤
∫ bκ

1

1

µ
dµ = ln(b0 −ℜzκ)− ln |ℑzκ| .

We manage the integral on the interval [aκ,max(−1, aκ)] analogously. Estimates for the
case γ = −1 follows again from (16). �

Lemma 2.3. There exists C > 0 such that for any λ ∈ [a0, b0], 0 < |κ| ≤ κ1,

|G(λ, κ)−G1(λ, κ)| ≤ Cκ2|Ĝ(λ, κ)| sup
(λ,κ)∈[a0,b0]×[−κ0,κ0]

|F ′(λ, κ)| ,

|G(λ, κ)−G1(λ, κ)| ≤ Cκ2|Ĝ(λ, κ)|2|λ− λ∞κ |α+1 .

Proof. For λ ∈ [a0, b0], 0 < |κ| ≤ κ1, we note that G1 − G = G(D − D1)G1 and so

|G − G1| ≤ δ−2
1 |Ĝ|2|D − D1| (see e.g. (5) and (6)). On the other hand, for λ ∈ [a0, b0],
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|κ| ≤ κ1,

D(λ, κ)−D1(λ, κ) = κ2 (F (λ, κ)− F (λ∞κ , κ)− F ′(λ∞κ , κ)(λ− λ∞κ ))(17)

= κ2
∫ λ

λ∞κ

(F ′(µ, κ)− F ′(λ∞κ , κ)) dµ .

(H1)(a) entails: |D(λ, κ)−D1(λ, κ)| ≤ 2Cκ2|λ−λ∞κ | sup(λ,κ)∈[a0,b0]×[−κ0,κ0] |F
′(λ, κ)|, which

leads to the first estimate once noted that |Ĝ(λ, κ)||λ − λ∞κ | ≤ 1 for λ ∈ [a0, b0] and
0 < |κ| ≤ κ1. (H1)(b) entails: |D(λ, κ)−D1(λ, κ)| ≤ Cκ2|λ− λ∞κ |α+1, which leads to the
second estimate. �

Corollary 2.1. There exists C > 0 such that for any t ∈ R, 0 < |κ| ≤ κ2,

|I2(t, κ)| ≤
∫ b0

a0

|G(λ, κ)−G1(λ, κ)| dλ ≤ Cκ2 .

Proof. We integrate the second statement of Lemma 2.3 for 0 < |κ| ≤ κ2 and obtain that,∫ b0

a0

|G(λ, κ)−G1(λ, κ)| dλ ≤ Cκ2
∫ b0

a0

|λ− λ∞κ |α+1

|λ− λ∞κ + iκ2ℑF (λ∞κ , κ)|2
dλ .

We use Lemma 2.2, with β = 2 and α + 1 instead of α. Then, the number α − β + 1 in
Lemma 2.2 is just α, which is positive. The first and second statements follow. �

Lemma 2.4. There exists C > 0 such that for any λ ∈ [a0, b0], 0 < |κ| ≤ κ1,

|G′(λ, κ)−G′
1(λ, κ)| ≤ Cκ2|Ĝ(λ, κ)|2|λ− λ∞κ |α .

Proof. For λ ∈ [a0, b0], 0 < |κ| ≤ κ1, we can write the difference between the difference of
the derivatives of G and G1 w.r.t. λ: G

′−G1
′ = L1+L2+L3 where L1 = G(G1−G)(1+

κ2F ′(λ, κ)), L2 = κ2GG1(F
′(λ∞κ , κ) − F ′(λ, κ)) and L3 = G(G1 − G)(1 + κ2F ′(λ∞κ , κ)).

Recall that for λ ∈ [a0, b0], 0 < |κ| ≤ κ1,

• G1 −G = G(D −D1)G1 and so |G−G1| ≤ δ−2
1 |Ĝ|2|D −D1| (see (5) and (6)),

• |D(λ, κ)−D1(λ, κ)| ≤ Cκ2|λ− λ∞κ |α+1 due to Hypothesis (H1)(b) and (17).

Up to some positive multiplicative constant, the quantities L1 and L3 can be bounded by

κ2|Ĝ(λ, κ)|3|λ−λ∞κ |α+1, while the term L2 is bounded by κ2|Ĝ(λ, κ)|2|λ−λ∞κ |α. The proof
follows from the fact that |Ĝ(λ, κ)| |λ− λ∞κ | ≤ 1 for λ ∈ [a0, b0] and 0 < |κ| ≤ κ1. �

Corollary 2.2. There exists C > 0 such that for any t ∈ R, 0 < |κ| ≤ κ2,

|J2(t, κ)| ≤
∫ b0

a0

|G′(λ, κ)−G′
1(λ, κ)| dλ ≤ C

 κ2α if α ∈ (0, 1)
κ2| log |κ|| if α = 1
κ2 if α > 1

.

http://dx.doi.org/10.1063/1.4989882


RESONANCES RANK ONE 13

Proof. We integrate Lemma 2.4 for 0 < |κ| ≤ κ2 and obtain that:∫ b0

a0

|G′(λ, κ)−G′
1(λ, κ)| dλ ≤ Cκ2

∫ b0

a0

|λ− λ∞κ |α

|λ− λ∞κ + iκ2ℑF (λ∞κ , κ)|2
dλ .

Then, we apply Lemma 2.2 with β = 2. Indeed, if α ∈ (0, 1) (resp. α = 1, resp. α > 1),
α − β + 1 = α − 1 < 0 (resp. = 0, resp. > 0), which proves the first statement. The
second statement follows now from the first and Corollary 2.1. �

3. Rank one perturbations

In this section, we shall prove results concerning rank one perturbations of self–adjoint
operators. In 3.1 we show how the positivity on the imaginary part of the unperturbed
reduced resolvent implies pure absolutely continuous spectrum. In 3.2 we describe how a
simple embedded eigenvalue turns into a resonance. Here smoothness of the resolvent is
required. In 3.3 we relate this to dynamic behavior of the system.

3.1. Behavior of Spectra. Let H0 be a self-adjoint operator on Hilbert space H, ψ ∈ H
a normalized vector and define

(18) Hκ = H0 + κ|ψ⟩⟨ψ| , κ ∈ R .
Let

Hψ := span{(Hκ − z)−1ψ/z /∈ R}
be the cyclic subspace generated by ψ. This space is independent of κ and reduces the
operator Hκ, for every κ, see [13].

Let us denote by Hψ
κ the part of Hκ on Hψ, i.e. H

ψ
κ : Hψ → Hψ is given by

Hψ
κ γ = Hκγ, for all γ ∈ DomHκ ∩Hψ .

Let P be an orthogonal projection such that PH0 ⊂ H0P , that is the range of P reduces
H0 (see [21] p. 278) and denote P⊥ := I − P , H⊥

κ := P⊥H0P
⊥. For κ ∈ R then define

(19) Fκ(z) := ⟨ψ, P⊥(H⊥
κ − z)−1P⊥ψ⟩

and
Fκ(λ+ i0) := lim

ϵ↓0
Fκ(λ+ iϵ)

Recall that σac(H), σs(H) and σp(H) denote the absolutely and singular and point spec-
trum respectively. With the definitions introduced above, our results on the behavior of
the spectra read as follows,

Theorem 3.1. Let J ⊂ R be an open interval. If for every λ ∈ J

(20) ℑF0(λ+ i0) > 0

then J ⊂ σac(H
ψ
κ ) and J ∩ σs(Hψ

κ ) = ∅, for all κ ̸= 0.

Theorem 3.2. Let J ⊂ R be an open interval. Suppose that
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(1) ℑF0(λ+ i0) > 0 for every λ ∈ J .
(2) If H0φ = λφ, for some λ ∈ J , then ⟨φ, ψ⟩ ̸= 0 and λ is a simple eigenvalue.

Then J ⊂ σac(Hκ) and J ∩ σp(Hκ) = ∅, for all κ ̸= 0.

Remark 3.1. It could happen that σsc(Hκ) ̸= ϕ.

Before going into the proofs, we shall need a preliminary result. Let us recall that
ρ(H) := C \ σ(H), where σ(H) is the spectrum of H.

Lemma 3.1. Let H be a self-adjoint operator and P an orthogonal projection such that
PH ⊂ HP , that is, PH reduces H. Then for all z ∈ ρ(H),

P⊥(H − z)−1P⊥ = P⊥(P⊥HP⊥ − z)−1P⊥

Proof. Since H is self–adjoint and the range of P⊥ reduces H, we have that H|P⊥H is also
self–adjoint. By the basic criterium for self–adjointness Ran(H|P⊥H− z) = P⊥H (see [29]
p. 256).

Let ψ ∈ P⊥H be arbitrary. Then, there exists φ ∈ DomH|P⊥H = P⊥H ∩DomH such
that ψ = (H − z)P⊥φ. Now, P⊥(H − z)−1P⊥ψ = P⊥(H − z)−1P⊥(H − z)P⊥φ = P⊥φ
and

P⊥(P⊥HP⊥ − z)−1P⊥ψ = P⊥(P⊥HP⊥ − z)−1P⊥(H − z)P⊥φ

= P⊥(P⊥HP⊥ − z)−1(P⊥HP⊥ − z)P⊥φ

= P⊥φ.

�

Now, let us prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Since P and P⊥ reduce H0, we have that for any z ∈ C \ R,
P (H0 − z)−1 = (H0 − z)−1P , and the corresponding commutation relation with P⊥ (see
[21] Theorem.6.5, p.173, Ch.3.). Therefore,

ℑ⟨ψ, (H0 − λ− iϵ)−1ψ⟩ = ℑ⟨Pψ, (H0 − λ− iϵ)−1Pψ⟩
+ ℑ⟨P⊥ψ, (H0 − λ− iϵ)−1P⊥ψ⟩
= ℑ⟨Pψ, (H0 − λ− iϵ)−1Pψ⟩+ ℑF0(λ+ iϵ),

where for the last equality we use Lemma 3.1.

Next we note that the term ℑ⟨Pψ, (H0−λ− iϵ)−1Pψ⟩ is always nonnegative. Actually,
for any self-adjoint operator H, setting u = (H − z)−1γ we have

ℑ⟨γ, (H − z)−1γ⟩ = ℑ⟨(H − z)u, u⟩
= ℑz∥u∥2.
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Hence, ℑ⟨γ, (H − z)−1γ⟩ is nonnegative when ℑz > 0. Holomorphic functions which map
the upper half plane into itself called Herglotz, Nevanlinna or Pick functions. The limits
of this functions when approaching the real axis from above exists a.e., see [30] Theorem
I.4.

Using hypothesis (20), we deduce that for every λ ∈ J ,

lim
ϵ↓0

ℑ⟨ψ, (H0 − λ− iϵ)−1ψ⟩ ≥ ℑF0(λ+ i0) > 0.

Now, by the spectral theorem, there exists a measure µψ such that

⟨ψ, (H0 − z)−1ψ⟩ =
∫
R

dµψ(t)

t− z

and H0, restricted to the the subspace of cyclicity generated by ψ, that is Hψ
0 defined

above, is unitarily equivalent to multiplication by the identity in L2(R, dµψ).
A result essentially due to Aronszajn and Donoghue (see [13], Theorem 2 and also [30]

Theorem II.2 (iii)) states that for any Borel set ∆, the absolutely continuous part of µψ
is given by µψac(∆) = µψ(∆ ∩ A), where

A = {λ|0 < ℑ⟨ψ, (H0 − λ− i0)−1ψ⟩ <∞}.

Also, the singular part of µψ is given by µψs(∆) = µψ(∆ ∩B), where

B = {λ|ℑ⟨ψ, (H0 − λ− i0)−1ψ⟩ = ∞}.

In fact due to Krein’s formula (see I.13 in [30]), we have that:

a) A is the support of the a.c. part of the measure µκψ in the expression

⟨ψ, (Hκ − z)−1ψ⟩ =
∫
R

dµκψ(t)

t− z
,

for all κ (see [13]).
b) If ℑ⟨ψ, (H0 − λ− i0)−1ψ⟩ = ∞ then ℑ⟨ψ, (Hκ − λ− i0)−1ψ⟩ = 0 for κ ̸= 0.

Therefore the result follows. �

Proof of Theorem 3.2. We have the decomposition H = Hψ⊕H⊥
ψ , where Hψ is the cyclic

subspace generated by ψ. This subspace reduces Hκ, for all κ [13]. Let us denote as above

by Hψ
κ the part of Hκ on Hψ and by Hψ

κ
⊥
the part of Hκ on H⊥

ψ . Then,

Hψ
κ : Hψ → Hψ

Hψ
κ

⊥
: H⊥

ψ → H⊥
ψ

Since by Theorem 3.1 J ⊂ σac(H
ψ
κ ) ⊂ σ(Hκ), we conclude J ⊂ σac(Hκ) .
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Now assume Hκθ = λθ, with λ ∈ J . Write θ = θ1 + θ2, where θ1 ∈ Hψ, θ2 ∈ H⊥
ψ ,

Hκθ1 = λθ1 and Hκθ2 = λθ2 (Hψ and H⊥
ψ reduce Hκ, for all κ).

Since Hψ
κ has pure a.c. spectrum in J , by Theorem 3.1 it follows that θ1 = 0. Since

θ2 ∈ H⊥
ψ , we deduce that θ2 ⊥ ψ and ⟨θ, ψ⟩ = 0. Hence,

λθ = Hκθ = H0θ.

Therefore, λ is an eigenvalue of H0 and λ ∈ J . From the fact that λ is a simple eigenvalue
of H0, we conclude that θ = cφ which contradicts the hypothesis ⟨φ, ψ⟩ ̸= 0. Therefore,
λ cannot be an eigenvalue of Hκ. �

3.2. Existence of resonance. Now, we state the result concerning the existence of a
resonance described by an approximate exponential decay of the survival probability.
For the next theorem consider the situation where H0 has a simple eigenvalue λ0, with
H0φ = λ0φ. As above, given a normalized vector ψ ∈ H such that ⟨φ, ψ⟩ ̸= 0, we define
Hκ := H0 + κ|ψ⟩⟨ψ| , κ ∈ R . Let us assume there is an interval I containing λ0 such
that Fκ(λ+ i0) exists, for all λ ∈ I, where

(21) Fκ(z) := ⟨ψ, P⊥(H⊥
κ − z)−1P⊥ψ⟩

and P = ⟨φ, ·⟩φ, P⊥ = I − P . By C1,β(J) we denote the set of functions F such that F ′

is β-Hölder continuous in J , cf. section 6. Then we have,

Theorem 3.3. Let H0φ = λ0φ where λ0 is a simple eigenvalue. Assume that F0(λ+i0) ∈
C1,β(I), with β > 0 and it satisfies

(22) ℑF0(λ0 + i0) > 0.

Let J ⊂ I be a closed interval such that λ0 is an interior point of J and ℑF0(λ+ i0) > 0,
for all λ ∈ J .

Given g a smooth characteristic function supported on J which is identically 1 in a
neighborhood of λ0, we have that for all t ∈ R and all small enough κ ̸= 0,

(23) ⟨φ, e−iHκtg(Hκ)φ⟩ = cκe
−iζκ|t| +R(t, κ)

with ζκ and cκ described in Theorem 2.1.

In particular, ℑζκ < 0, cκ = 1 + O(κ2) and |R(t, κ)| ≤ Cκ2. Moreover, |t| |R(t, κ)| ≤
Cκ2α, if α ∈ (0, 1) and |t| |R(t, κ)| ≤ Cκ2| log |κ||, if α = 1.

Before proving Theorem 3.3, we need the following lemmas.

Let H be a self-adjoint operator defined in a Hilbert space H and P be an orthogonal
projector with RanP ⊂ Dom(H), with RanP of finite dimension.
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Lemma 3.2. (Feshbach-Livsic formula) Consider z ∈ C,ℑ z ̸= 0. Then the operator
M := P (H − z)P − PHP⊥(H⊥ − z)−1P⊥HP is invertible and as an operator M :
RanP → RanP and

P (H − z)−1P = P
(
P (H − z)P − PHP⊥(H⊥ − z)−1P⊥HP

)−1
P .

See [18] for a proof.

Lemma 3.3. Let f ∈ C1,β(I) where I ⊂ R an open interval. Assume that f(x) ̸= 0 for
all x ∈ I. Then (1/f) ∈ C1,β(J) where J is a closed interval contained in I.

Proof. Since f(x) ̸= 0 for all x ∈ I, the function 1
f
is C1. To prove the β- Hölder continuity

in I, we compute,

(
1

f
)′(x)− (

1

f
)′(y) =

f ′(y)(f 2(x)− f 2(y)) + f 2(y)(f ′(y)− f(x))

f 2(x)f 2(y)

For x, y in J , by continuity the denominator is bounded away from zero.

On the other hand, by continuity of f and f ′ and the Mean Value Theorem, the first
term in the numerator satisfies,

|f ′(y)| |f(x) + f(y)| |f(x)− f(y)| ≤ c|x− y|,
Because Lipschitz continuity implies Hölder continuity, we conclude that the first term is
β-Hölder continuous.

The second term is bounded above by

c|f ′(x)− f ′(y)|
which finishes the proof. �

Proof of Theorem 3.3. Following Krein’s formula, see [30] I.13 and [13], we obtain that

Fκ(z) =
F0(z)

1 + κF0(z)
.

Therefore Fκ(λ + i0) exists and is finite for all λ ∈ J̄ and κ ∈ R. By hypothesis and
Lemma 3.3 the function λ→ Fκ(λ+ i0) belongs to C

1,β(J). Actually, (λ, κ) → Fκ(λ+ i0)
is a C1,β(J × R) function. Note that for all (λ, κ) ∈ J × R,

(24) ℑFκ(λ+ i0) =
ℑF0(λ+ i0)

|1 + κF0(λ+ i0)|2
> 0

Since λ0 is simple, we can use the Feshbach-Livsic formula, see Lemma 3.2, to obtain

⟨φ, (Hκ − z)−1φ⟩ =
1

⟨φ, (Hκ − z)φ⟩ − ⟨φ, PHκP⊥(H⊥
κ − z)−1P⊥HκPφ⟩

=
1

λ0 + κ |⟨φ, ψ⟩|2 − z − κ2 |⟨φ, ψ⟩|2Fκ(z)
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From the above identity and (22) we obtain that for all κ ̸= 0, for all λ ∈ J̄ the limit
⟨φ, (Hκ − λ− i0)−1φ⟩ exists and λ→ ⟨φ, (Hκ − λ− i0)−1φ⟩ is a C1,β(I) function.

Also, by the Stone’s formula we know that

(25) ⟨φ, e−iHκtg(Hκ)φ⟩ = lim
ϵ↓0

1

π

∫
R
g(λ)e−iλtℑ⟨φ, (Hκ − λ− iϵ)−1φ⟩ dλ

=
1

π

∫
R
g(λ)e−iλtℑ

(
1

λ0 − λ+ κ |⟨φ, ψ⟩|2 − κ2|⟨φ, ψ⟩|2Fκ(λ+ i0)

)
dλ .

since the limit can be taken inside the integral by (24).

To finish the proof, apply Theorem 2.1 to (25) with λκ = λ0+κ|⟨φ, ψ⟩|2 and F (λ, κ) =
|⟨φ, ψ⟩|2Fκ(λ+ i0). �

3.3. Spectral Concentration and Sojourn time. The results of Section 3.2 bear the
two following straightforward consequences:

Corollary 3.1. Under the hypotheses of Theorem 3.3, we have that for any t ∈ R,

(26) lim
κ→0

⟨φ, e−i
1

κ2Γκ
(Hκ−ℜζκ) |t|g(Hκ)φ⟩ = e−|t|

where Γκ = |⟨ψ, φ⟩|2ℑF(λ∞κ , κ).

Proof. By multiplying the equation (23) by eiℜζκ|t|, we obtain,

⟨φ, e−i(Hκ−ℜζκ)|t|g(Hκ)φ⟩ = cκe
−κ2Γκ|t| + eiℜζκ|t|R(t, κ) .

After scaling the time, i.e. replacing t by t
κ2Γκ

, it follows that

⟨φ, e−i
1

κ2Γκ
(Hκ−ℜζκ)|t|g(Hκ)φ⟩ = cκe

−|t| + eiℜζκ
|t|
ΓκR(

t

κ2Γκ
, κ) .

The corollary follows now from the estimates on the error term in Theorem 3.3. �
Remark 3.2. Note that |Γκ − Γ0| ≤ C|κ| with Γ0 = ℑF (λ0, 0).

Formula (26) is related to Kato’s spectral concentration, see [12], [15], [21]. The con-
nection between this type of formula and the spectral concentration has been established
for isolated eigenvalues (of the unperturbed operator) in [12] and extended to embedded
eigenvalues in [15].

Given any Hamiltonian H, the quantity |⟨φ, e−iHtφ⟩|2 measures the probability of find-
ing the system in its initial state φ, at time t. Hence,

(27) τH(φ) ≡
∫ ∞

−∞
|⟨φ, e−iHtφ⟩|2dt

represents the expected amount of time the system spends in its initial state. As remarked
in [24], one expects that in presence of a resonance near λ, there exists a state φ whose
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sojourn time τH(φ) is very large and such that the spectral measure of H in the state φ
is concentrated near λ. An explicit lower bound on the sojourn time appears in [2] also
in the case of rank one perturbations.

Corollary 3.2. Under the hypotheses of Theorem 3.3, we have that for any κ ̸= 0 small
enough ∣∣∣∣τHκ(φκ)−

1

κ2Γκ

∣∣∣∣ ≤ C

{
|κ|2α−1 if 0 < α < 1/2
1 if α ≥ 1/2

,

for some C > 0, where φκ :=
√
g(Hκ)φ and Γκ = |⟨ψ, φ⟩|2ℑF(λ∞κ , κ).

Observe that φκ → φ when κ→ 0.

Proof. We denote by ∥ · ∥2 the Hilbert norm on L2(R, dt). For any 0 < |κ| ≤ κ∗,

|∥I(t, κ)∥22 − |cκ|2∥e−iζκ|t|∥22| ≤ ∥R(t, κ)∥2
(
∥I(t, κ)∥2 + |cκ|∥e−iζκ|t|∥2

)
≤ ∥R(t, κ)∥2

(
∥R(t, κ)∥2 + 2|cκ|∥e−iζκ|t|∥2

)
.

where I is given by (4). Now, ∥e−iζκ|t|∥22 = 1
Γκκ2

. The result follows from the estimates on
the error term in Theorem 3.3. �
Remark 3.3. Corollary 3.2 provides explicit asymptotics on the sojourn time based on
estimates (23). It is actually possible to derive suitable lower bounds on the sojourn
time under much weaker regularity assumptions on the reduced resolvents by means of the
concept of energy-width [2].

4. Finite spectral multiplicity

First, we recall the concept of spectral representation and spectral multiplicity for a
general self-adjoint operator.

4.1. Reduced operator. Spectral measures. Let H : H → H be a self-adjoint
operator in a Hilbert space H. From the spectral representation, see [33] Theorem 7.18
p.195, we know that there exists a family of measures {ρα : α ∈ Λ} and a unitary operator
Ũ such that the following diagram commutes,

H H−−−→ H

Ũ

y xŨ−1

⊕α∈ΛL
2(R, ρα)

Mid−−−→ ⊕α∈ΛL
2(R, ρα)

That is, H = Ũ−1MidŨ where Mid is the maximal operator of multiplication by the
identity id, i.e., Midf(x) = xf(x).

Assume that the operator H has finite spectral multiplicity, that is Λ is a finite set
with N elements. We can construct a matrix measure distribution ρ and a space of vector
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valued functions L2(R,CN , ρ), such that H = U−1
H MidUH where UH : H → L2(R,CN , ρ)

is unitary and Midf(x) = xf(x) is defined from L2(R,CN , ρ) → L2(R,CN , ρ). For these
concepts see [1] Vol. 2 section 71, [34] section 10, [26] p.101 , [1] Section 72 and [34]
Theorem 8.7.

4.2. Multiplicity of eigenvalues. Since H is unitarily equivalent to the operator multi-
plication for the identity on L2(R, ρ), with ρ a matrix measure distribution, it is interesting
to characterize the multiplicity of a given eigenvalue ofH in terms of ρ. For fixed λ, denote
by δλ the measure

(28) δλ(∆) :=

{
1 λ ∈ ∆

0 λ ̸∈ ∆

where ∆ ⊂ R is a Borel set. In what follows M = (mij) shall denote a non-negative
symmetric matrix with mij ∈ C where i, j = 1, 2, ...N . We shall use the notation Mδλ for
the matrix measure distribution with entries (mijδλ).

Lemma 4.1. Consider λ0 ∈ R, µ a matrix measure distribution defined on R, with
µ({λ0}) = 0 and M a non-negative constant matrix as above. Let us take Mid defined on
the space L2(R,CN , dµ+Mδλ0).

Then λ0 is an eigenvalue ofMid of multiplicity p ∈ {1, 2, . . . , N} if and only if RankM =
p if and only if dim (KerM) = N − p.

Proof. λ0 is an eigenvalue of Mid if and only if there exists a non zero vector φ ∈
L2(R,CN , dµ +Mδλ0) such that (Mid − λ0)φ(x) = 0 almost everywhere. This implies
the existence of u⃗ ∈ CN such that the eigenfunction has the form φ(x) = χ{λ0}(x)u⃗,
where χ{λ0}(x) = 1 if x = λ0 and 0 otherwise. Thus λ0 is an eigenvalue of Mid if and
only if ∥φ∥2L2

= ⟨u⃗,Mu⃗⟩ ̸= 0 and φ = χ{λ0}(x)u⃗. Now, for the difference of two eigen-
vectors we have ∥χ{λ0}(x)u⃗ − χ{λ0}(x)v⃗∥2L2

= ⟨w⃗,Mw⃗⟩ with w⃗ = u⃗ − v⃗. Since M is non-
negative,⟨w⃗,Mw⃗⟩ = 0 if and only if Mw = 0. Therefore the eigenvector φ = χ{λ0}(x)u⃗ is
different from the eigenvector χ{λ0}(x)v⃗ in the space L2(R,CN , dµ+Mδλ0) if and only if
Mu⃗ ̸= Mv⃗. Now let us construct an isomorphism between the subspace of eigenvectors
and the Range of M in the following way:

I : Ker(Mid − λ0) → {v⃗ :Mu⃗ = v⃗}
I(χ{λ0}(x)u⃗) =Mu⃗

Since I is biyective and linear the two spaces have the same dimension and the lemma is
proven.

�
Remark 4.1. If rank M > 1, then the matrix distribution dµ+Mδλ0 does not correspond
to a Sturm-Liouville operator with limit point case conditions, since the singular spectrum
of such operators is simple see [32].
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4.3. Reduction process. Let B ⊂ R be a fixed Borel set and let PB := EH(B) where
EH is the spectral family associated to H. Let us decompose the matrix function ρ as
follows:

ρ(∆) = ρB(∆) + ρBc(∆)

with ∆ ⊂ R a Borel set where

ρB(∆) := ρ(∆ ∩B) , ρBc(∆) := ρ(∆ ∩Bc) .

The following result will be useful to prove almost exponential decay of resonant states.

Theorem 4.1. Let ψ be a vector in H and H be a self-adjoint operator with finite spectral
multiplicity N . Then

⟨PBψ, (PBHPB − z)−1PBψ⟩ =
∫
R

⟨(UHψ)(x), dρB(x)(UHψ)(x)⟩CN

x− z

=

∫
R

⟨(UHPBψ)(x), dρ(x)(UHPBψ)(x)⟩CN

x− z
.

Remark 4.2. In case de matrix dρ(x) has only one entry

⟨(UHψ)(x), dρ(x)(UHψ)(x)⟩ = |(UHψ)(x)|2dρ(x).

Before we prove the above theorem we need the following lemmas.

Lemma 4.2. For any Borel set ∆ ⊂ R the following identity holds,

(29) PBEPBHPB
(∆)PB = EH(∆ ∩B) = PBEH(∆)PB .

Proof. We first note that PBHPB = HPB = f(H) where f(x) = xχB(x) , with χB the
characteristic function on the Borel set B. Also we know that Ef(H)(∆) = EH(f

−1(∆)),
see [8] Theorem 4, Chapter 6 p.158. Thus,

PBEPBHPB
(∆)PB = EPBHPB

(∆)PB = EHPB
(∆)PB

= EHPB
(∆)EH(B) = EH(f

−1(∆))EH(B)

= EH(f
−1(∆) ∩B) .

We claim that for f(x) = xχB(x) one has that f
−1(∆)∩B = ∆∩B. Clearly, if x ∈ ∆∩B

then f(x) = xχB(x) = x ∈ ∆, so x ∈ f−1(∆).

Also, x ∈ f−1(∆) ∩ B, implies that f(x) ∈ ∆. But for x ∈ B, g(x) = 1 so f(x) = x
and x ∈ ∆, ending the proof. �

Lemma 4.3. For any vector ψ ∈ H

(30) ⟨EH(∆)ψ, ψ⟩ =
∫
∆

⟨(UHψ)(x), dρ(x)(UHψ)(x)⟩ .
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Proof. From the spectral representation theorem we know that χ∆(H) = U−1
H Mχ∆

UH
where (Mχ∆

h)(x) = χ∆(x)h(x). Then

⟨EH(∆)ψ, ψ⟩H = ⟨χ∆(H)ψ, ψ⟩H = ⟨UH χ∆(H)ψ,UHψ⟩L2(ρ)

= ⟨Mχ∆
UHψ,UHψ⟩L2(ρ)

=

∫
R
χ∆(x)⟨(UHψ)(x), dρ(x)(UHψ)(x)⟩

=

∫
∆

⟨(UHψ)(x), dρ(x)(UHψ)(x)⟩ .

�

Proof of Theorem 4.1. Let us define the measure µg(∆) = ⟨EH(∆ ∩ B)g, g⟩. According
to Lemma 4.3 and the definition of ρB(∆) we deduce the following identity:

µψ(∆) =

∫
∆∩B

⟨(UHψ)(x), dρ(x)(UHψ)(x)⟩ =

∫
∆

⟨(UHψ)(x), dρB(UHψ)(x)⟩ (x).

On the other hand, using Lemma 4.2 we get that

(31) µψ(∆) = ⟨PBEPBHPB
(∆)PBψ, ψ⟩ =

∫
∆

⟨(UHψ)(x), dρB(x)(UHψ)(x)⟩

By the spectral theorem,

⟨PBψ, (PBHPB − z)−1PBψ⟩ =

∫
R

1

x− z
d⟨EPBHPB

PBψ, PBψ⟩

=

∫
R

1

x− z
d⟨PBEPBHPB

PBψ, ψ⟩ .

So, by identity (31) one has that

⟨PBψ, (PBHPB − z)−1PBψ⟩ =
∫
R

1

x− z
dµψ(x)

=

∫
R

1

x− z
⟨(UHψ)(x), dρB(x)(UHψ)(x)⟩ .

To prove the second equality in the theorem we apply again Lemma 4.2 to obtain that

⟨PBψ, (PBHPB − z)−1PBψ⟩ =

∫
R

1

x− z
d⟨PBEPBHPB

PBψ, ψ⟩

=

∫
R

1

x− z
d⟨EH(x)PBψ, PBψ⟩ .

We finish the proof by using Lemma 4.3. �
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Let H0 be a self-adjoint operator defined on H with spectrum of finite multiplicity N .
Define

Hκ = H0 + κ|ψ⟩⟨ψ|
where ψ a normalized vector on H and κ ∈ R. Let UH0 be a unitary operator and µ a
matrix measure distribution defined on R such that UH0H0U

−1
H0

=Mid on L
2(R,CN , dµ).

Now we can present a useful result about almost exponential decay. It will be applied
in next section to Sturm-Liouville operators.

Theorem 4.2. a) Assume that H0 has a simple eigenvalue λ0 embedded in some
continuous spectrum. Precisely,
a1) H0φ = λ0φ , ∥φ∥ = 1.
a2) There exists an open interval I of R with dµ = γ(λ)dλ + Mδλ0 , λ0 ∈ I

where for each λ ∈ I, γ(λ) is a non-negative matrix and M is a constant
non-negative matrix of rank one.

b) The map λ→ ⟨ (UH0ψ)(λ), γ(λ)(UH0ψ)(λ) ⟩ is C1,α(I), with 0 < α ≤ 1.
c) For φ and ψ we assume that

⟨φ, ψ⟩H = ⟨UH0φ,UH0ψ⟩L2 ̸= 0 and ⟨(UH0ψ)(λ0), γ(λ0)(UH0ψ)(λ0)⟩CN ̸= 0.

Then there exists an open interval J , λ0 ∈ J, J̄ ⊂ I such that

(1) For all κ ̸= 0 , σp(Hκ) ∩ J = ∅, J ⊂ σac(Hκ).
(2) Given g a smooth characteristic function supported on J which is identically 1 in

a neighborhood of λ0, we have that for all t ∈ R and all κ ̸= 0 but small enough

⟨φ, e−iHκtg(Hκ)φ⟩ = cκe
−iζκ|t| +R(t, κ)

with ζκ and cκ described in Theorem 2.1.

In particular, ℑζκ < 0, cκ = 1+O(κ2) and |R(t, κ)| ≤ Cκ2. Moreover, |t||R(t, κ)| ≤ Cκ2α,
if α ∈ (0, 1) and |t||R(t, κ)| ≤ Cκ2| log |κ||, if α = 1.

Remark 4.3. There is a normalized vector u⃗ such that Ran(M) = Cu⃗ and

UH0φ =
1√

⟨u⃗,Mu⃗⟩CN

χ{λ0}u⃗ .

Now we can use the tools we have developed to prove the theorem.

Proof. Applying Theorem 4.1 with B = R \ {λ0} and ρ = µ we obtain

⟨ψ, P⊥(H⊥
0 − z)−1P⊥ψ⟩ =

∫
⟨(UH0ψ)(λ), γ(λ)(UH0ψ)(λ)⟩CNdλ

λ− z
.

Then (1) follows applying Theorem 3.2, taking into account that

ℑF0(λ0 + i0) = ℑ⟨ψ, P⊥(H⊥
0 − λ0 − i0)−1P⊥ψ⟩ = ⟨(UH0ψ)(λ0), γ(λ0)(UH0ψ)(λ0)⟩CN
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and (2) follows from Theorem 3.3 together with Theorem 6.1. �

5. A Sturm Liouville model with an embedded eigenvalue

First let us construct an operator acting on functions defined on the half axis R+ which
has an embedded eigenvalue. The function

h(x) := cosx+ k sinx

is solution of the initial value problem

−u′′ = u

u(0) = 1, u′(0) = k .

We assume k > 0 fixed, (one can set for example k = 1). Let us define

q(x) := −2k
d

dx

[ h2(x)

1 + k
∫ x
0
h2(t)dt

]
.

The operator LN (N stands for the Neumann boundary condition) acting on a dense
subspace of L2(R+) generated by

(lu)(x) = −u′′ + q(x)u, u′(0) = 0, 0 ≤ x <∞

has the following spectral function see [25] p. 46:

(32) ρN(λ) = ρ̂(λ) + ks(λ− 1)

where s(t) =

{
0 if t < 0
1 if t ≥ 0

and ρ̂(λ) is the spectral function of the operator Lk generated by

(l0u)(x) = −u′′, 0 ≤ x <∞
u′(0) = ku(0)

that is

(33) dρ̂(λ) =

{ √
λ

π(λ+k2)
dλ if λ ≥ 0

0 if λ < 0

See [26] p. 141. Therefore the point 1 is an embedded eigenvalue for the operator LN .

The operator LN defined as above will take the place of H0 in Theorem 4.2. This operator
satisfies the hypothesis a1) and a2) of that theorem. Fix a vector ψ ∈ L2(R+), R+ = {x ∈ R :
x ≥ 0}. Consider the perturbed operator

Hκ = LN + κ|ψ⟩⟨ψ|

Let O ⊂ R+ an open interval such that λ0 = 1 ∈ O. To verify hypothesis b) of Theorem 4.2
we shall find an interval I ⊂ R+ such that the eigenvalue λ0 = 1 ∈ I and |ULN

ψ(λ)|2ρ̂(λ) is in
C1,α(I) with 0 < α ≤ 1.
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The unitary operator ULN
is given by the transform

(ULN
ψ)(λ) =

∫
R+

ω(t, λ)ψ(t) dt

where ω(t, λ) is a solution of the eigenvalue problem

−u′′ + q(x)u = λu u(0, λ) = 0 , u′(0, λ) = 1

for any λ ∈ C. The function ω(t, λ) is an entire function of λ.

If we choose ψ to be of compact support then (ULN
ψ)(λ) ∈ C∞(O). Since ρ̂ ∈ C∞(O) then

|(ULN
ψ)(λ)|2ρ̂(λ) ∈ C∞(O) and therefore there is an open interval I containing λ0 = 1 such

that |(ULN
ψ)(λ)|2ρ̂(λ) ∈ C1,α(I), so condition b) in Theorem 4.2 is satisfied.

To realize condition c) of Theorem 4.2 we can take for instance ψ(t) = χ∆(t)ω(t, 1) where ∆
is an open interval. So,

|(ULN
ψ)(1)|2 =

∫
∆
|ω(t, 1)|2dt > 0

and therefore
|(ULN

ψ)(1)|2ρ̂(1) > 0

Since ρ̂(1) = 1
π(1+k2)

> 0. Moreover

⟨φ,ψ⟩H = ⟨ULN
φ,ULN

ψ⟩L2 =

∫
R
χ{1}(x)(ULN

ψ)(x)dρN (x)

= (ULN
ψ)(1)ρN ({1}) = (ULN

ψ)(1)k ̸= 0.

6. Boundary limit of Borel transforms

Let I ⊂ R be an open interval and consider a measure µI : B → R+ defined on the Borel sets
B of R such that µI restricted to I is absolutely continuous with respect to Lebesgue measure,
i.e. there exists a measurable function f : R → R+ such that for any Borel set ∆ ⊂ I, it holds
that ∫

∆
f(x)dx = µ(∆) .

Assume moreover that f ∈ C1,α(I), that is, f ∈ C1(I) with f ′ α−Hölder continuous on I,
0 < α ≤ 1. We write F(z) for the corresponding Borel transform associated to the measure µI ,

F(z) =

∫
dµI(x)

x− z
, ℑ z ̸= 0 .

The following results assures the existence and the smoothness of the boundary values limϵ→0+ F(λ+
iϵ), See [35], [6] [7],[11].

Theorem 6.1. Let I ⊂ R be an open interval and µI the measure defined above. Then

F (λ) := lim
ϵ→0+

F(λ+ iϵ)

exists and F ∈ C1(I). Moreover for any interval J such that J̄ ⊂ I, the function F ′ is β-Hölder
continuous in J for all β < α., that is, F ∈ C1,β(J) .
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Proof. Let K be an open subinterval such that J̄  K  K̄  I and let us define η ∈ C∞
0 (R, [0, 1])

with η(x) = 0 if x /∈ K and η(x) = 1 if x ∈ J̄ . For any z ∈ C with ℑ z ̸= 0,

F(z) =

∫
K

f(x)η(x)

x− z
dx+

∫
R−J̄

(1− η(x))

x− z
dµ(x) .

If Re z ∈ J the second integral in the above equality represents an holomorphic function, there-
fore this term is C1(I) and α-Hölder continuous in any subinterval J with J̄ ⊂ I. (Recall that
continuously differentiable function on compact sets of the real line are γ-Hölder continuous
with 0 < γ ≤ 1).

Now let us study the first term. Setting z = λ+ iϵ, it follows that∫
K

f(x)η(x)

(x− λ)− iϵ
dx = R(λ, ϵ) + iI(λ, ϵ)

where

R(λ, ϵ) :=

∫
R

f(x)η(x)(x− λ)

(x− λ)2 + ϵ2
dx , I(λ, ϵ) :=

∫
R

ϵf(x)η(x)

(x− λ)2 + ϵ2
dx .

Since fη ∈ C1
0 (R) we obtain that I(λ) := limϵ→0+ I(λ, ϵ) = πf(λ)η(λ), see [28] Lemma 2.3 i)

p.41, so I(λ) ∈ C1
0 (R).

Moreover, the derivative I ′(λ) = π(f(λ)η(λ))′ is α-Hölder and thus β-Hölder inJ with β < α.
This follows because (fη)′ = f ′η + fη′ and fη′ ∈ C1

0 (I) and therefore α-Hölder in J and

|f ′(x)η(x)− f ′(y)η(y)| ≤ |η(x)(f ′(x)− f ′(y))|+ |(η(x)− η(y))f ′(y)|
≤ M |x− y|α

because f ′ is α-Hölder and η ∈ C∞
0 .

Now let us consider R(λ) := limϵ→0+ R(λ, ϵ). This limit exists because fη ∈ C1
0 and therefore

fη is α-Hölder continuous with compact support, see Lemma 10 in[6]. Moreover,

R(λ) = P.V.

∫
R

f(x)η(x)

x− λ
:= H[fη](λ)

where P.V. means the integral in the sense of principal value and H stands for the Hilbert
transform, see [28] Lemma 2.5, p.51and [11]. Since fη ∈ C1 and fη ∈ Lp one deduces
that (H[fη](λ))′ = H[(fη)′](λ), see [27] Theorem 1 and formula 3.24. Using again Privaloff-
Korn’s Theorem or Lemma 10 in[6] and the α-Hölder continuity of (fη)′ we finally obtain that
H[(fη)′](λ) is β-Hölder continuous and thus (R(λ))′ is β-Hölder continuous. �
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