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Corrections and Addendum to “Inverse Spectral

Analysis with Partial Information on the Potential,

III. Updating Boundary Conditions”

Rafael del Rio, Fritz Gesztesy, and Barry Simon

Unless explicitly stated otherwise, all subsequent formula numbers, references, cited

theorems, page numbers, etc., refer to those in [1].

(1) Our proof of Lemma 2.2 contains a number of typographical errors:

(a) sinh(2|y|1/2) should be replaced by sinh(|2y|1/2) in (2.3). Similarly, exp(2|y|1/2)

should be replaced by exp(|2y|1/2) in the 2d and 4th lines on p. 755.

(b) The infinite product in (2.4) should read

∞∏
n=1

[(
1+ 16|y|2

π4n4

)1/2 (
1+ |y|

2

λ2
n

)−1/2
]
,

and the argument following (2.4) should be replaced by the following one.

If 0 ≤ a ≤ b, then

1+ a2|y|2
1+ b2|y|2 ≤ 1;

and if a > b > 0, then

(
1+ a2|y|2
1+ b2|y|2

)1/2

=
(

1+
(
a2 − b2

)|y|2
1+ b2|y|2

)1/2

≤
(

1+ a
2 − b2

b2

)1/2

= a
b
,

∞∏
n=1

(
1+ 16|y|2

π4n4

1+ |y|2
λ2
n

)1/2

≤
∞∏

n:λn>π2n2/4

4λn
π2n2

=
∞∏
n=1

(
1+

(
λn −

(
π2n2/4

))
+

π2n2/4

)
<∞

if (2.1) holds.
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(c) Replace the estimates (2.5a) and (2.5b) by the asymptotic relations

Pj(z) =
z→±i∞

O(cos(
√
z)) and Qj(z) =

z→±i∞
O(
√
z sin(

√
z)),

respectively.

(d) Replace f(iy) by |f(iy)| in the 4th line of p. 755.

(2) A slight modification of our proof of Theorem 2.1 allows us to also recover

Marchenko’s uniqueness result (Theorem 2.3.2 in [16]),which goes beyond Borg’s theorem

(our Corollary 3.2) in the following sense. Marchenko does not a priori fix the boundary

conditions when comparing spectra for the two potentials q1 and q2. More precisely,

denote by σ(q;h, `) the spectrum of the operator −d2/dx2 + q in L2((0,1)) with boundary

conditions u′(0) + hu(0) = 0, u′(1) + `u(1) = 0, h, ` ∈ R. Then Marchenko’s result reads as

follows.

Theorem (Theorem 2.3.2 in [16]). Letq1, q2 ∈ L1((0,1)) be real-valued, suppose thathj, kj,

`j ∈ R, j = 1,2, h1 6= k1, h2 6= k2, and assume

σ(q1;h1, `1) = σ(q2;h2, `2), σ(q1;k1, `1) = σ(q2;k2, `2). (1)

Then h1 = h2, k1 = k2, `1 = `2, and q1 = q2 a.e. on [0,1].

Sketch of proof. The asymptotic eigenvalue behavior (3.1) yields

h1 − h2 = k1 − k2 := A.

Identifying m1(z) = m`1 (z) and m2(z) = m`2 (z), and redefining H(z) as

H̃(z) = P2(z)Q1(z)− P1(z)Q2(z)+AP1(z)P2(z)

and G(z) as

G̃(z) = H̃(z)/f(z) = P1(z)P2(z)[m1(z)−m2(z)+A]/f(z),

one can follow the proof of Theorem 2.1 step by step. As a result, one arrives at

|G̃(iy)| ≤ exp(|2y|1/2)

|f(iy)| |m1(iy)−m2(iy)+A| =
|y|→∞

O(|y|−1/2) (2)

and hence at G̃(z) = 0 using a Phragmén-Lindelöf argument. Thus,

m1(z)−m2(z)+A = 0,

and the asymptotic behavior

mj(z) =
z→±i∞

±i√z+ o(1)
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then proves A = 0. Hence,

m1(z) = m2(z) and h1 = h2, k1 = k2.

But then m`1 (z) = m`2 (z) yields `1 = `2 and q1 = q2 a.e. on [0,1] by Marchenko’s Theo-

rem 1.1.

We emphasize theO(|y|−1/2)-term in (2), as opposed to the corresponding o(|y|−1/2)-

term in our proof of Theorem 2.1. This shows that in contrast to Borg’s theorem (i.e.,

Corollary 3.2), all eigenvalues are required in (1), and one can no longer dispense with

the knowledge of one of them.

Actually, Marchenko also includes the case of Dirichlet boundary conditions by

reducing it to the case discussed above by means of appropriate linear fractional trans-

formations of m(z). We omit further details.
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