Inverse Spectral Analysis with Partial Information on the Potential, III. Updating Boundary Conditions

Rafael del Rio, Fritz Gesztesy, and Barry Simon

1 Introduction

This paper is a postscript to two earlier papers [5], [6] in that it provides a new way of looking at the problems considered in those papers; it allows the same methods to prove additional results.

To explain our results, we recall earlier theorems of Borg [1] (see also [8], [10][14]) and of Hochstadt-Lieberman [9] (see also [7], [15]). Throughout this paper, assume $q \in L^{1}((0,1))$ to be real-valued; consider the operator $H=-\frac{d^{2}}{d x^{2}}+q$ in $L^{2}((0,1))$ with boundary conditions

$$
\begin{align*}
& u^{\prime}(0)+h_{0} u(0)=0 \tag{1.1}\\
& u^{\prime}(1)+h_{1} u(1)=0 \tag{1.2}
\end{align*}
$$

where $h_{j} \in \mathbb{R} \cup\{\infty\}, j=0,1$ (with $h_{0}=\infty$ shorthand for the boundary condition $u(0)=0$). Fix $h_{1} \in \mathbb{R}$ but think of $H\left(h_{0}\right)$ as a family of operators depending on h_{0} as a parameter. Then Borg's and Hochstadt-Lieberman's results can be paraphrased as follows.

Borg [1]. The spectra of $H\left(h_{0}\right)$ for two values of h_{0} uniquely determine q.
Hochstadt-Lieberman [9]. The spectra of $H\left(h_{0}\right)$ for one value of h_{0} and q on [0, 1/2] determine q.

In [6], two of us proved a result which can be paraphrased as follows.
Theorem of [6]. Half the spectra of one $H\left(h_{0}\right)$ and q on $[0,3 / 4]$ uniquely determine q.

One of our goals in this note is to prove the following.
New Result. The spectrum of one $\mathrm{H}\left(\mathrm{h}_{0}\right)$ and half the spectrum of another $\mathrm{H}\left(\mathrm{h}_{0}\right)$ and q on $[0,1 / 4]$ uniquely determine q.

We will also show the following.
New Result. Two-thirds of the spectra of three $\mathrm{H}\left(\mathrm{h}_{0}\right)$ uniquely determine q .
Our point is as much a new way of looking at the argument in [6] as these new results. Fundamental to our approach here and in [5], [6] is the Titchmarsh-Weyl mfunction defined by

$$
\mathfrak{m}_{\mathfrak{h}_{1}}(z)=\frac{\mathfrak{u}_{h_{1}}^{\prime}(z, 0)}{\mathfrak{u}_{h_{1}}(z, 0)},
$$

where $\mathfrak{u}_{\mathfrak{h}_{1}}(z, x)$ solves $-\mathfrak{u}^{\prime \prime}(z, x)+q(x) u(z, x)=z \mathfrak{u}(z, x)$ with the boundary condition (1.2). $m_{h_{1}}$ is a meromorphic function on \mathbb{C} (in fact, a Herglotz function) with all of its zeros and poles on the real axis. Since $h_{1} \in \mathbb{R}$ will be fixed throughout this paper, we will delete the subscript h_{1} from now on and simply write $m(z)$ instead. Moreover, due to the assumption $h_{1} \in \mathbb{R}$, we will index the eigenvalues of $H\left(h_{0}\right)$ by $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

A fundamental result of Marchenko [16] (see also [2], [3], [17]) reads as follows.
Theorem 1.1. $\mathfrak{m}(z)$ uniquely determines q a.e. on $[0,1]$.
Our fundamental strategy can be described as follows.
(a) Note that λ is an eigenvalue of $H\left(h_{0}\right)$ if and only if $m(\lambda)=-h_{0}$.
(b) Prove a general theorem that knowing m at points $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}, \ldots$ determines m as long as $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ has sufficient density. Given (a), this will allow one to prove that if $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}, \ldots$ have sufficient density, an infinite sequence of pairs $\left\{\left(\lambda_{n}, \alpha_{n}\right)\right\}_{n \in \mathbb{N}_{0}}$ and the knowledge that $\mathrm{H}\left(\mathrm{h}_{0}=\alpha_{n}\right)$ has an eigenvalue at λ_{n} determines m (and so q a.e. on [0, 1] by Theorem 1.1).
(c) Use scaling covariance to extend the $[0,1]$ result to one for $[x, 1]$ for any $x \in(0,1)$.
(d) Note that a knowledge of q a.e. on $[0, x]$ allows one to update boundary conditions. Explicitly, let $\mathrm{H}\left(\mathrm{h}_{\mathrm{x}}\right)$ be the operator in $\mathrm{L}^{2}((x, 1))$ with boundary condition (1.2) but (1.1) replaced by

$$
\begin{equation*}
u^{\prime}(x)+h_{x} u(x)=0 . \tag{1.3}
\end{equation*}
$$

Then λ_{n} is an eigenvalue of $H\left(h_{0}=\alpha_{n}\right)$ if and only if it is an eigenvalue of $H\left(h_{x_{0}}=\beta_{n}\right)$, where β_{n} is obtained by solving $m_{n}^{\prime}(x)=q(x)-\lambda_{n}-m_{n}^{2}(x)$ on $\left[0, x_{0}\right]$ with the boundary condition $m_{n}(x=0)=-\alpha_{n}$ and setting $\beta_{n}=-m_{n}\left(x=x_{0}\right)$.

We will present steps (b) and (c) in Sections 2 and 3 and then step (d) in Section 4. We will not explicitly derive them, but the results in [6] which treat operators on $(0,1)$ and allow one to trade $C^{2 k}$ conditions on q for k eigenvalues, can be extended to the context we discuss here.

We also note that the ideas in this paper extend to Jacobi matrices.
Finally, while the present paper and [5], [6] concentrate on discrete spectra, we might point out that our m-function strategy also applies in certain cases involving absolutely continuous spectra (see [4]).

2 Zeros of the m-function

If $a \in \mathbb{R}$, let $a_{+}=\max (a, 0)$.
Theorem 2.1. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a sequence of distinct positive real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\frac{1}{4} \pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \tag{2.1}
\end{equation*}
$$

Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=-\frac{d^{2}}{d x^{2}}+q_{j}$ in $L^{2}((0,1))$ with boundary conditions

$$
u^{\prime}(1)+h_{1}^{(j)} u(1)=0
$$

and $h_{1}^{(j)} \in \mathbb{R}, j=1$, 2 . Suppose that $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)$ for all $n \in \mathbb{N}_{0}$. Then $m_{1}=m_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[0,1]$ and $h_{1}^{(1)}=h_{1}^{(2)}$).

Remarks. (1) In our examples, $\lambda_{n} \sim \pi^{2} n^{2}+C$ as $n \rightarrow \infty$ (cf. (3.1)), so (2.1) is satisfied, for instance, by considering two distinct spectra of $H\left(h_{0}\right)$.
(2) We allow the case $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)=\infty$.

As a preliminary result, we note the following.
Lemma 2.2. Suppose $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of positive real numbers satisfying (2.1) and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \lambda_{n}^{-1}<\infty \tag{2.2}
\end{equation*}
$$

Define $f(z):=\prod_{n=0}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right)$; then

$$
\begin{equation*}
\varlimsup_{\substack{|y| \rightarrow \infty \\ y \in \mathbb{R}}} \frac{|y|^{1 / 2} \sinh \left(2|y|^{1 / 2}\right)}{|f(i y)|}<\infty \tag{2.3}
\end{equation*}
$$

Proof. Let $y \in \mathbb{R}$. Then $\sinh \left(2|y|^{1 / 2}\right) /|y|^{1 / 2}=\left|\sin \left(2 i|y|^{1 / 2}\right) /|y|^{1 / 2}\right|$ and

$$
\frac{\sin (2 \sqrt{z})}{2 \sqrt{z}}=\prod_{n=1}^{\infty}\left(1-\frac{4 z}{\pi^{2} n^{2}}\right)
$$

so (2.3) becomes

$$
\begin{equation*}
\varlimsup_{|y| \rightarrow \infty} \frac{|y|}{1+\frac{|y|}{\lambda_{0}}} \prod_{n=1}^{\infty}\left[\frac{\left(1+\frac{4|y|}{\pi^{2} n^{2}}\right)}{\left(1+\frac{|y|}{\lambda_{n}}\right)}\right]<\infty \tag{2.4}
\end{equation*}
$$

using $2^{-1 / 2}(1+|x|) \leq\left(1+x^{2}\right)^{1 / 2} \leq(1+|x|)$.
If $0 \leq a \leq b$, then
$\left(\frac{1+a|y|}{1+b|y|}\right) \leq 1$,
and if $a>b>0$, then

$$
\begin{aligned}
& \frac{(1+a|y|)}{1+b|y|}=1+\frac{(a-b)|y|}{1+b|y|} \leq 1+\frac{a-b}{b}=\frac{a}{b} \\
& \prod_{n=1}^{\infty} \frac{\left(1+\frac{4|y|}{\pi^{2} n^{2}}\right)}{\left(1+\frac{|y|}{\lambda_{n}}\right)} \leq \prod_{n: \lambda_{n}>\frac{1}{4} \pi^{2} n^{2}} \frac{4 \lambda_{n}}{\pi^{2} n^{2}}=\prod_{n=1}^{\infty}\left[1+\frac{\left(\lambda_{n}-\frac{1}{4} \pi^{2} n^{2}\right)_{+}}{\frac{1}{4} \pi^{2} n^{2}}\right]<\infty
\end{aligned}
$$

if (2.1) holds.

Proof of Theorem 2.1. We follow the arguments in [5], [6] fairly closely. One can write $m_{\mathfrak{j}}(z)=Q_{\mathfrak{j}}(z) / P_{j}(z), \mathfrak{j}=1,2$, where
(1) P_{j}, Q_{j} are entire functions satisfying

$$
\begin{align*}
& \left|P_{j}(z)\right| \leq C \exp (\sqrt{|z|}) \tag{2.5a}\\
& \left|Q_{j}(z)\right| \leq C(1+\sqrt{|z|}) \exp (\sqrt{|z|}) \tag{2.5b}
\end{align*}
$$

(2)

$$
\begin{equation*}
m_{j}(z)= \pm i \sqrt{z}+o(1) \text { as } z \rightarrow \pm i \infty . \tag{2.6}
\end{equation*}
$$

(We use the square root branch with $\operatorname{Im}(\sqrt{z}) \geq 0$.)
Suppose $m_{1} \neq m_{2}$. Then $P_{2}(z) Q_{1}(z)-P_{1}(z) Q_{2}(z):=H(z)$ is an entire function of order at most $1 / 2$ and not identically zero. Since $H\left(\lambda_{n}\right)=0$, we conclude that $\sum_{n \in \mathbb{N}_{0}} \lambda_{n}^{-a}<\infty$ if $a>1 / 2$. In particular, (2.2) holds, and we can define $f(z)=\prod_{n=0}^{\infty}\left(1-z / \lambda_{n}\right)$. Next, define

$$
\begin{equation*}
G(z):=\frac{H(z)}{f(z)}=\frac{P_{1}(z) P_{2}(z)}{f(z)}\left(m_{1}(z)-m_{2}(z)\right) \tag{2.7}
\end{equation*}
$$

Since $\mathrm{H}\left(\lambda_{n}\right)=0, \mathrm{G}(z)$ is an entire function. By (2.3),

$$
\varlimsup_{|y| \rightarrow \infty} \frac{|y|^{1 / 2} \exp \left(2|y|^{1 / 2}\right)}{|f(i y)|}<\infty
$$

So, by (2.5) and (2.6),

$$
|G(i y)| \leq \frac{\exp \left(2|y|^{1 / 2}\right)}{f(i y)}\left|m_{1}(i y)-m_{2}(i y)\right|=o\left(|y|^{-1 / 2}\right)
$$

goes to zero as $|y| \rightarrow \infty$. The Phragmén-Lindelöf argument of [6] then yields the contradiction $\mathrm{G}(z) \equiv 0$; that is, $\mathrm{m}_{1}=\mathrm{m}_{2}$.

Remark. The above yields o(|y| $\left.\left.\right|^{-1 / 2}\right)$ even though o(1) would have been sufficient. We have thrown away half a zero. That means one can prove the following result.

Theorem 2.2. Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}_{0}}$ be two sequences of real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{\left(\mu_{n}-\pi^{2} n^{2}\right)_{+}}{n^{2}}<\infty \tag{2.8}
\end{equation*}
$$

with $\mu_{m} \neq \lambda_{n}$ for all $m, n \in \mathbb{N}_{0}$. Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=$ $-\left(d^{2} / d x^{2}\right)+q_{j}, j=1,2$ in $L^{2}((0,1))$ with boundary conditions

$$
\mathbf{u}^{\prime}(1)+h_{1}^{(j)} u(1)=0
$$

and $h_{1}^{(j)} \in \mathbb{R}, \mathfrak{j}=1,2$. Suppose that $m_{1}(z)=m_{2}(z)$ for all z in $\left\{\lambda_{n}\right\}_{n=0}^{\infty} \cup\left\{\mu_{n}\right\}_{n=0}^{\infty}$ except perhaps for one. Then $\mathfrak{m}_{1}=\mathfrak{m}_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[0,1]$ and $h_{1}^{(1)}=h_{1}^{(2)}$).

By scaling, one sees that the following analog of Theorem 2.1 holds (there is also an analog of Theorem 2.2).

Theorem 2.3. Let $\mathrm{a}<\mathrm{b}$ and let $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a sequence of distinct positive real numbers satisfying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\lambda_{n}-\frac{\pi^{2} n^{2}}{4(b-a)^{2}}\right)_{+}}{n^{2}}<\infty . \tag{2.9}
\end{equation*}
$$

Let m_{1}, m_{2} be the m-functions for two operators $H_{j}=-\left(d^{2} / d x^{2}\right)+q_{j}, j=1,2$ in $L^{2}((a, b))$ with boundary conditions (1.3) at $x=a$ and

$$
u^{\prime}(b)+h_{b}^{(j)} u(b)=0,
$$

where $h_{b}^{(j)} \in \mathbb{R}, j=1,2$. Suppose that $m_{1}\left(\lambda_{n}\right)=m_{2}\left(\lambda_{n}\right)$ for all $n \in \mathbb{N}_{0}$. Then $m_{1}=m_{2}$ (and hence $q_{1}=q_{2}$ a.e. on $[a, b]$ and $\left.h_{b}^{(1)}=h_{b}^{(2)}\right)$.

3 Whole interval results

Fix $h_{1} \in \mathbb{R}$, let $H\left(h_{0}\right)$ be the operator on $L^{2}((0,1))$ with $u^{\prime}(1)+h_{1} u(1)=0$ and $u^{\prime}(0)+h_{0} u(0)=0$ boundary conditions, and denote by $\lambda_{n}\left(h_{0}\right)$ the corresponding eigenvalues of $H\left(h_{0}\right)$. Then, for $h_{0} \in \mathbb{R}$, it is known (see, e.g., the references in [6]) that

$$
\begin{equation*}
\lambda_{n}=(n \pi)^{2}+2\left(h_{1}-h_{0}\right)+\int_{0}^{1} q(x) d x+o(1) \text { as } n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

and for $h_{0}=\infty$,

$$
\begin{equation*}
\lambda_{n}=\left[\left(n+\frac{1}{2}\right) \pi\right]^{2}+2 h_{1}+\int_{0}^{1} q(x) d x+o(1) \text { as } n \rightarrow \infty . \tag{3.2}
\end{equation*}
$$

To say that $H\left(h_{0}\right)$ has eigenvalue λ is equivalent to $m(\lambda)=-h_{0}$. Thus, Theorem 2.1 implies the following.

Theorem 3.1. Let $\mathrm{H}_{1}\left(\mathrm{~h}_{0}\right), \mathrm{H}_{2}\left(\mathrm{~h}_{0}\right)$ be associated with two potentials $\mathrm{q}_{1}, \mathrm{q}_{2}$ on $[0,1]$ and two potentially distinct boundary conditions $h_{1}^{(1)}, h_{1}^{(2)} \in \mathbb{R}$ at $x=1$. Suppose that $\left\{\left(\lambda_{n}, h_{0}^{(n)}\right)\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of pairs with $\lambda_{0}<\lambda_{1}<\cdots \rightarrow \infty$ and $h_{0}^{(n)} \in \mathbb{R} \cup\{\infty\}$ so that both $H_{1}\left(h_{0}^{(n)}\right)$ and $\mathrm{H}_{2}\left(\mathrm{~h}_{0}^{(n)}\right)$ have eigenvalues at λ_{n}. Suppose that (2.1) holds. Then $\mathrm{q}_{1}=\mathrm{q}_{2}$ a.e. on $[0,1]$ and $h_{1}^{(1)}=h_{1}^{(2)}$.

Given (3.1), (3.2) we immediately have Borg's theorem [1] as a corollary (this is essentially the usual proof), but more is true. For example, by using Theorem 2.2, one infers the following.

Corollary 3.2 [1]. Fix $h_{0}^{(1)}, h_{0}^{(2)} \in \mathbb{R}$. Then all the eigenvalues of $H\left(h_{0}^{(1)}\right)$ and all the eigenvalues of $\mathrm{H}\left(\mathrm{h}_{0}^{(2)}\right)$, save one, uniquely determine q a.e. on $[0,1]$.

Corollary 3.3. Let $h_{0}^{(1)}, h_{0}^{(2)}, h_{0}^{(3)} \in \mathbb{R}$ and denote by $\sigma_{j}=\sigma\left(H\left(h_{0}^{(j)}\right)\right)$ the spectra of $H\left(h_{0}^{(j)}\right)$, $\mathfrak{j}=1,2,3$. Assume $S_{j} \subseteq \sigma_{j}, \mathfrak{j}=1,2,3$ and suppose that for all sufficiently large $\lambda_{0}>0$, we have

$$
\#\left\{\lambda \in\left\{S_{1} \cup S_{2} \cup S_{3}\right\} \text { with } \lambda \leq \lambda_{0}\right\} \geq \frac{2}{3} \#\left\{\lambda \in\left\{\sigma_{1} \cup \sigma_{2} \cup \sigma_{3}\right\} \text { with } \lambda \leq \lambda_{0}\right\}-1 \text {. }
$$

Then q is uniquely determined a.e. on $[0,1]$.
In particular, two-thirds of three spectra determine q.

4 Updating m

We are now able to understand why partial information on q - knowing it on $[0, a]$ - lets us get away with less information on eigenvalues, a phenomenon originally discovered by

Hochstadt-Lieberman [9] in the special case where $a=1 / 2$. We note that $\mathfrak{m}(z, x)$ satisfies the Ricatti-type equation

$$
\begin{equation*}
m^{\prime}(z, x)=q(x)-z-m^{2}(z, x) \tag{4.1}
\end{equation*}
$$

If we know that λ is an eigenvalue of $H\left(h_{0}\right)$, then $\mathfrak{m}(\lambda, 0)=-h_{0}$. If we know q on $[0, a]$, we can use (4.1) to compute $m(\lambda, a):=-h_{a}$ and so infer that λ is an eigenvalue of $H\left(h_{a}\right)$, the operator in $\mathrm{L}^{2}((\mathrm{a}, 1))$. By Theorem 2.3, this means we only need a lower density of eigenvalues of the various $\mathrm{H}\left(\mathrm{h}_{\mathrm{a}}\right)$. A typical result is the following theorem.

Theorem 4.1. Let σ_{N} and σ_{D} be the eigenvalues of $H\left(h_{0}=0\right)$ and $H\left(h_{0}=\infty\right)$, respectively. Let $S_{N} \subseteq \sigma_{N}, S_{D} \subseteq \sigma_{D}$. Fix $a \in(0,1)$. Suppose for $\lambda_{0}>0$ sufficiently large that

$$
\#\left\{\lambda \in\left\{S_{N} \cup S_{D}\right\} \text { with } \lambda \leq \lambda_{0}\right\} \geq(1-a) \#\left\{\lambda \in\left\{\sigma_{N} \cup \sigma_{D}\right\} \text { with } \lambda \leq \lambda_{0}\right\} .
$$

Then S_{N}, S_{D}, and q on $[0, a]$ uniquely determine q a.e. on $[0,1]$.
This follows immediately from the updating idea. For example, if $a=3 / 4$, we can recover Theorem 1.3 of [6] (it is essentially a reworking of the proof in [6]); but for $a \in(0,1 / 2)$, the result is new and implies, for example, that q on $[0,1 / 4]$, all the Neumann eigenvalues, and half the Dirichlet eigenvalues, uniquely determine q a.e. on $[0,1]$.

Acknowledgments

This material is based upon work supported by CONACYT Project 400316-5-0567PE and US National Science Foundation grants DMS-9623121 and DMS-9401491.

References

[1] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), 1-96.
[2] -, Uniqueness theorems in the spectral theory of $y^{\prime \prime}+(\lambda-q(x)) y=0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, 276-287.
[3] I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its special function, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951), 309-360 (Russian); Amer. Math. Soc. Transl. (2) 1 (1955), 253-304 (English).
[4] F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70 (1997), 66-71.
[5] -, m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, submitted to J. Anal. Math.
[6] ——, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, preprint, 1997.
[7] O.H. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc. 62 (1980), 41-48.
[8] H. Hochstadt, The inverse Sturm-Liouville problem, Comm. Pure Appl. Math. 26 (1973), 715-729.
[9] H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), 676-680.
[10] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidskr. B (1949), 25-30.
[11] B. M. Levitan, On the determination of a Sturm-Liouville equation by two spectra, Amer. Math. Soc. Transl. 68 (1968), 1-20.
[12] ——, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.
[13] B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19 (2) (1964), 1-63.
[14] M. M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc. 55 (1994), 57-122.
[15] ——, Spectral analysis of Volterra operators and inverse problems for systems of differential equations, preprint, 1997.
[16] V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, I, Trudy Moskov. Mat. Obšč. 1 (1952), 327-420 (Russian); Amer. Math. Soc. Transl. (2) 101 (1973), 1-104 (English).
[17] B. Simon, A new approach to inverse spectral theory, I. The basic formalism, in preparation.
del Rio: IIMAS-UNAM, Apdo. Postal 20-726, Admon No. 20, 01000 Mexico D.F., Mexico;
delrio@servidor.unam.mx
Gesztesy: Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA; fritz@math.missouri.edu

Simon: Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA; bsimon@caltech.edu

