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POINT MASS PERTURBATIONS OF SPECTRAL MEASURES

RAFAEL DEL RIO, LUIS O. SILVA AND JULIO H. TOLOZA

Using a generalization of the moment problem and the extremal properties of spectral measures corre-
sponding to the selfadjoint extensions of a regular symmetric operator, we study point mass perturbations
of spectral measures. We obtain general results for a wide class of operators and apply them to the anal-
ysis of point mass perturbations of spectral measures pertaining to Bessel and generalized Schrödinger
operators.

1. Introduction

The motivation of this work stems from the intriguing fact that very small perturbations of a measure may
destroy the density of polynomials in the space of square integrable functions with respect to that measure.
More precisely: one can find a Borel measure ρ such that the polynomials are dense in L2(R, ρ), but
they are no longer dense in L2(R, ρ̃) when ρ̃ is obtained by adding a point mass to ρ, that is,

(1) ρ̃ = ρ+ δλ, λ 6∈ supp ρ,

where δλ denotes a discrete measure which gives weight only to the point λ. This instability phenomenon
pertains to the properties of solutions to the classical Hamburger moment problem. In this context,
the phenomenon is formulated as follows. If ρ is an N -extremal solution to an indeterminate moment
problem, then ρ̃ is a non-N -extremal solution to a moment problem (see [1, Theorem 2.3.2] and [36,
Proposition 4.1]). Remarkably, the theory of the Hamburger moments is the theory of Jacobi operators,
i.e., operators in l2(N) generated by semiinfinite tridiagonal symmetric matrices (see Section 6.1). In
this context, the mentioned phenomenon is paraphrased as follows: if ρ is the spectral measure of a
canonical selfadjoint extension of a nonselfadjoint Jacobi operator, i.e., a selfadjoint restriction of its
adjoint (see Section 2.1), then there is no canonical selfadjoint extension of any Jacobi operator having
ρ̃ as its spectral measure.

This paper is devoted to studying the situation illustrated above in a setting that allows us to consider
not only nonselfadjoint Jacobi operators, but a wide class of regular symmetric operators with deficiency
indices (1, 1), including regular and certain singular Schrödinger operators. Our approach is based on
Krein’s theory of symmetric operators [19; 20; 21], the theory of generalized extensions due to Naı̆mark
[31] and a generalization of the moment problem originally proposed by Livsič [27]. This theoretical

Del Rio was supported by UNAM-DGAPA-PAPIIT IN110818. Silva was supported by UNAM-DGAPA-PAPIIT IN110818
and SEP-CONACYT CB-2015 254062. Toloza was partially supported by CONICET (Argentina) under grant PIP
11220150100327CO.
2020 AMS Mathematics subject classification: primary 34L05, 47B32; secondary 47B36.
Keywords and phrases: spectral measures, de Branges spaces, perturbations of measures.
Received by the editors on September 10, 2020.

1407

https://doi.org/rmj.2021.51-4
https://doi.org/10.1216/rmj.2021.51.1407


1408 RAFAEL DEL RIO, LUIS O. SILVA AND JULIO H. TOLOZA

scaffold allows us to elucidate the structure of the set of spectral measures and to prove several results on
point mass perturbations of spectral measures presented in Section 5. The central theorem (Theorem 5.4)
is general enough to be applied to the analysis of point mass perturbation of spectral measures related to
generalized Schrödinger operators with measures and Bessel operators. This analysis led to Theorems 6.2,
6.4, and 6.5.

The spectrum of a regular Schrödinger operator, defined by a selfadjoint boundary condition (exclud-
ing Dirichlet) at the left endpoint and a certain selfadjoint boundary condition at the right endpoint, has
the following asymptotic behavior:

(2) λn = cn2
+ O(1) as n→∞,

(see [16; 32]). From this formula, by a straightforward argument (see Remark 6.3), one concludes that
if ρ is the spectral measure of a regular Schrödinger operator with these selfadjoint boundary conditions,
then ρ̃, defined as in (1), cannot be the spectral measure of any regular Schrödinger operator with the
same selfadjoint boundary condition at the left endpoint and any selfadjoint boundary condition at the
right endpoint no matter which potential function is considered. It is worth remarking that the results of
Section 5 provide a way for dealing with point mass perturbation of spectral measures for a wide range
of operators even in the case when asymptotics of the kind of (2) are not available. This is illustrated in
Sections 6.2 and 6.3.

Let us elaborate on the theoretical framework developed in this paper which is of interest in itself
irrespective of the results given in Sections 4 and 6. The classical theory of moments tells us that to
account for all solutions to the moment problem, one has to recur to Naı̆mark’s theory of generalized
extensions [30; 31] since the solutions are the generalized spectral measures (see Definition 2.5) of
the corresponding Jacobi operator. Here we remark that, despite the classicality of the theory, relatively
recent developments [9; 46] make use of [31] to construct solutions to the classical moment problem with
the measure having certain predefined properties. Our approach makes use not only of Naı̆mark’s theory,
but also Krein’s theory of symmetric operators with deficiency indices (1,1) [19; 20; 21] to study the
set of measures associated with an arbitrary regular symmetric operator not necessarily entire [14]. This
allows us to characterize the spectral measures associated with the operator (Theorem 3.4) and describe
the extremal properties of measures related to this operator’s selfadjoint extensions (Theorem 3.6). The
next step in our method is the use of the functional model for regular symmetric operators [39; 40] to map
any regular symmetric operator into the multiplication operator in a de Branges space. This reformulation
leads us directly to the generalized moment problem.

There are various ways of generalizing the moment problem. Here, we have in mind a proposal of
generalization that goes back to Livsič [27] for whom the moment problem consists in finding a measure
ρ such that the inner product in a Hilbert space of functions is expressed through the inner product in
L2(R, ρ). A related setting of the generalized moment problem is found in the introduction of [45]. As
pointed out in [35, Chapter 6], de Branges treated this problem using a different terminology when the
Hilbert space of functions is a de Branges space [8]. In this work, we also consider the generalization of
[27] with the underlying Hilbert space being a de Branges space, but in contrast to [8] and [35, Chapter 6],
we focus on the extremal properties of the solutions to the generalized moment problem.

Let us outline the material of this paper. Section 2 presents classical results that are included for
the sake of completeness and to introduce the notation. Section 3 studies the extremal properties of
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measures associated with regular symmetric operators. A short survey on de Branges space theory and the
generalized moment problem are the subject of Section 4. In this section, we also present the functional
model for regular symmetric operators by means of which we can use the theory of de Branges spaces to
study our class of operators. In Section 5, we prove the main results which account for how the properties
of spectral measures change when adding a mass at a single point. Here we also touch upon the fact that
certain functions which are dense in L2(R, ρ) are no longer dense in L2(R, ρ̃) (see (1)). These results
may have several applications to the inverse spectral analysis of operators as is shown in [36] for Jacobi
operators. Finally, in Section 6, we illustrate the results of this work. The first example is used to put
our results in the context of the classical moment problem. The other two examples present nontrivial
results pertaining to differential operators which include regular and singular Schrödinger operators.

2. Preliminaries

Let H be a separable Hilbert space. The inner product in it is denoted by 〈·, ·〉, where we agree that the
left-hand side argument is antilinear. We denote by ⊕, 	, and u the orthogonal sum, the orthogonal
complement, and the direct sum of linear spaces, respectively.

Let A be a linear closed symmetric operator, not necessarily densely defined. If A is not densely
defined, then A∗ is a multivalued linear operator (linear relation). In any case, the symmetry condition,
A⊂ A∗, remains valid (since in the theory of linear relations, one identifies A and A∗ with the correspond-
ing subspaces of H⊕H). The deficiency indices n+(A) and n−(A) of A are defined as the dimension of
H	 ran(A− z I ), when z ∈ C+ := {z ∈ C : Im z > 0} and z ∈ C− := {z ∈ C : Im z < 0}, respectively. If A
has equal deficiency indices, then it has canonical selfadjoint extensions (that is, selfadjoint restrictions
of A∗), with some of these extensions being proper multivalued linear operators if dom(A) is not dense
in H [15, Proposition 5.4].

What follows is a brief revision of Naı̆mark’s theory of selfadjoint extensions to a larger space [31;
30] (see also [2, Appendix 1] and [45]), as well as some results from Krein’s theory on regular symmetric
operators [14; 21].

2.1. Generalized resolvents.

Definition 2.1. Consider a closed symmetric operator A. Let A+ be a selfadjoint extension of A in a
Hilbert space H+ ⊃H (H+ =H is allowed). For w ∈ C and z ∈ C \ spec(A+), define

(3) VA+(w, z) := (A+−w I )(A+− z I )−1
= I + (z−w)R+(z),

where R+ is the resolvent of A+ (see [14, Chapter 1, §2.1]).

From the first resolvent identity (see [6, Chapter 3, §7]), one verifies that

(4) VA+(w, z)= VA+(z, w)−1 and VA+(w, z)VA+(z, v)= VA+(w, v)

hold true for any v,w, z ∈ C \ spec(A+). Also, it is straightforward to establish that

(5) VA+(w, z)∗ = VA+(w̄, z̄).

The following assertion arises by combining the first identity in (4) with (5) (see [14, Chapter 1, §2.1]).
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Proposition 2.2. Let z ∈ C and w ∈ C+. For any selfadjoint extension A+ of A such that z 6∈ spec(A+),
the operator VA+(w, z) maps H+	 ran(A− w̄ I ) injectively onto H+	 ran(A− z̄ I ).

Definition 2.3. A scalar function with domain of analyticity containing C+ is a Herglotz function when-
ever Im z > 0=⇒ Im f (z)≥ 0. By this definition, any real constant is a Herglotz function. Denote by R

the union of the class of Herglotz functions and the constant∞.

Definition 2.4. Denote by P+ the orthogonal projector of H+ onto H and by R+(z) the resolvent of A+.
The operator

R(z) := P+R+(z) �H, z ∈ C \R

is a generalized resolvent of A [31] (see also [2, Appendix 1] and [45, §3]).

Fix a canonical selfadjoint extension of a closed symmetric operator A with deficiency indices n+(A)=
n−(A)= 1 and denote it by A∞. For w ∈ C+ and z ∈ C \ spec(A∞), define

(6) ψ(z) := VA∞(w, z)ψ,

where ψ ∈ ker(A∗−w I ) \ {0} (see [2, Appendix 1, §4, Equation 2′]).
Let R∞(z) be the resolvent of A∞. Given τ ∈R, define

(7) Rτ (z) := R∞(z)−
〈ψ(z̄), ·〉ψ(z)
τ (z)+Q(z)

,

where
Q(z) := i Imw+ (z−w)〈ψ(z̄), ψ(w)〉

is the so-called Q-function (see [2, Appendix 1, Equation 8]). Rτ (z) is the resolvent of a canonical
selfadjoint extension of A if and only if τ(z) ≡ c ∈ R∪ {∞}. Moreover, once a canonical selfadjoint
extension A∞ is fixed, (7) induces a bijection between R and the set of all generalized resolvents of A
(see [10, Theorem 6.2], also [22; 23; 24; 31; 44]). Equation (7) is known as the Krein–Naı̆mark formula.

Definition 2.5. Let E A+ denote the spectral family of A+ given by the spectral theorem. Let X denote
the σ -algebra of Borel sets on R. Given a selfadjoint extension A+ of a symmetric operator A, the map

FA+(∂) := P+E A+(∂) �H, ∂ ∈ X,

is called a generalized spectral family of the operator A. Furthermore, given φ ∈H \ {0}, we define

(8) σA+,φ(∂) := 〈φ, FA+(∂)φ〉H, ∂ ∈ X.

We call σA+,φ the generalized spectral measure of A associated with φ and A+.

Note that
σA+,φ(∂)= 〈φ, E A+(∂)φ〉H+, ∂ ∈ X,

so σA+,φ is also the spectral measure of the selfadjoint extension A+ associated with φ ∈H and therefore
it is a nonnegative finite scalar measure. On the basis of [2, Appendix I, Theorem 2], the next result
holds true.
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Proposition 2.6. F is a generalized spectral family of A (that is, F = FA+ for some selfadjoint extension
A+ of A) if and only if the operator-valued function F(t) := F(−∞, t) (t ∈ R) satisfies, for any φ ∈H,
the following conditions:

(i) The function 〈φ, F(t)φ〉 does not decrease when t increases.

(ii) F(t)φ is left continuous.

(iii) F(t)φ −−−−→
t→−∞

0 and F(t)φ −−−→
t→∞

φ.

(iv) If φ ∈ dom(A), then

‖Aφ‖2 =
∫

R

t2d〈φ, F(t)φ〉 and Aφ =
∫

R

td F(t)φ.

The next statement is proven on the basis of Proposition 2.6 (see [2, Appendix 1, pp. 141–143]).

Proposition 2.7. There is a bijection between R and the generalized spectral family of any symmetric
operator with deficiency indices (1, 1). The bijection is given by the combination of (7) and the identity

(9) 〈φ, R(z)φ〉H = 〈φ, R+(z)φ〉H+ =
∫

R

dσA+,φ(t)
t − z

.

Moreover, the same bijection gives a one-to-one map between R∪ {∞} and the spectral family corre-
sponding to canonical selfadjoint extensions of A.

2.2. Regular symmetric operators and gauges.

Definition 2.8. A closed symmetric nonselfadjoint operator is said to be completely nonselfadjoint if it
is not a nontrivial orthogonal sum of a symmetric and a selfadjoint operators.

Definition 2.9. The complex number z is in the set of points of regular type of a closed operator T when
there exists cz > 0 such that

‖(T − z I )φ‖ ≥ cz‖φ‖ for all φ ∈ dom(T ).

The complement of the set of points of regular type of T is called the spectral kernel of T .

Definition 2.10. A closed operator T is regular when the set of points of regular type is the whole
complex plane.

The notion of regularity just introduced should not be confused with the regularity of operators gen-
erated by differential expressions (see Introduction and Section 6.2)

A regular, closed symmetric operator is necessarily completely nonselfadjoint since regularity implies
that the spectral kernel is empty and, therefore, the operator cannot have selfadjoint parts. On the other
hand, there are many completely nonselfadjoint operators that are not regular [42, §2]. We note that the
dimension of ker(A∗− z I ) is constant for all z ∈ C whenever A is regular.

Definition 2.11. Let S(H) denote the set of regular, closed symmetric operators in H with deficiency
indices n+(A)= n−(A)= 1.
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The next assertion is well known for densely defined symmetric operators (see [6, Chapter 9, §3,
Theorem 9] and also [3; 11; 14]). A proof for the case under discussion in this work can be found in [40,
Proposition 2.4].

Proposition 2.12. Let A be in S(H). The following statements are true:

(i) The spectrum of every canonical selfadjoint extension of A consists solely of isolated eigenvalues of
multiplicity one.

(ii) Every real number is part of the spectrum of one, and only one, canonical selfadjoint extension of
A.

(iii) The spectra of the canonical selfadjoint extensions of A are pairwise interlaced.

Note that item (i) above means that every selfadjoint extension of A is a simple operator [2, §69].
Also, item (iii) above (together with the fact that under extensions the spectral kernel does not decrease)
implies that A is regular if and only if the spectra of any two selfadjoint extensions of A do not intersect.

For any A ∈ S(H), let κ ∈H be such that

(10) H= ran(A− z0 I )u span{κ},

for some z0 ∈ C. For this vector κ , consider the set

(11) {z ∈ C : κ ∈ ran(A− z I )} = {z ∈ C :H 6= ran(A− z I )u span{κ}}.

The following result is proven in [39, Theorem 2.2]. It was first formulated by Krein without proof in
[21, Theorem 8].

Proposition 2.13. For every A ∈ S(H), there exists κ satisfying (10) such that the corresponding set (11)
does not intersect the real line.

Definition 2.14. We call the vector κ , whose existence is established in Proposition 2.13, a spectral
gauge of A ∈ S(H).

Lemma 2.15. A spectral gauge of A ∈ S(H) is a generating vector (as defined in [2, §69]) for any
canonical selfadjoint extension of A.

Proof. Let Aγ be any canonical selfadjoint extension of A and κ a spectral gauge of A. Since κ is not
in ran(A− x I ) for any x ∈ R, κ has a nonzero projection onto the one-dimensional space ker(A∗− x I ).
Because ker(A∗− x I )= ker(Aγ − x I ) whenever x ∈ spec(Aγ ), it follows that κ has a nonzero projection
onto every eigenspace of Aγ since its spectrum is discrete. �

The following assertion is stated in [21, Theorem 1] and proven in [14, Theorem 1.2.5].

Proposition 2.16. Let κ be a spectral gauge of A ∈ S(H) and a, b ∈ R be such that a < b. If F is a
generalized spectral family of A, then

(12) F([a, b])φ =
∫ b

a

〈ψ(t), φ〉
〈ψ(t), κ〉

d F(t)κ

for any φ ∈H and ψ given in (6).
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3. Extremality of measures

Definition 3.1. Consider A ∈ S(H) and let κ be a spectral gauge of A. Recalling (8), define

Vκ(A) := {σ = σA+,κ : A+ is selfadjoint extension of A}.

Inside Vκ(A), we single out the set of extremal measures

Vext
κ (A) := {σ = σA+,κ : A+ is canonical selfadjoint extension of A}.

The reason for using word “extremal” above will be explained in Theorem 3.6 below. In the context
of this definition, Proposition 2.7 implies the following.

Corollary 3.2. For any spectral gauge κ of A ∈ S(H), there is a bijection between R and Vκ(A). More-
over, this bijection gives a one-to-one mapping between R∪ {∞} and Vext

κ (A).

The bijection referred above depends on the choice of A∞ (see Section 2.1), but regardless of this
choice, all measures arising from spectral families corresponding to canonical selfadjoint extensions of
A are obtained when τ runs through R∪ {∞}. Note that, as a consequence of Proposition 2.12, one has:

Corollary 3.3. Let κ be a spectral gauge of A ∈ S(H). All measures in Vext
κ (A) are discrete and their

supports are pairwise disjoint. For any x ∈ R, there is a measure σ ∈ Vext
κ (A) such that σ {x}> 0.

The next statement can be found in [14, Chapter 2, §7.1] and the first part of it in [2, Appendix I, §4]
(see [20, Theorem 6] and [19]).

Theorem 3.4. Consider A ∈ S(H). Given τ ∈R, let Rτ (z) be a generalized resolvent as in (7). If κ is a
spectral gauge of A, then

〈κ, Rτ (z)κ〉 = −
τ(z)A(z)−C(z)
τ (z)B(z)− D(z)

,

where A(z), B(z), C(z), D(z) are meromorphic functions on C, analytic on R.

Proof. Reasoning as in [14, Chapter 42, §7.1], one obtains the stated formula by inserting the right-hand
side expression from (7) into 〈κ, Rτ (z)κ〉 and considering the functions:

A(z) := −
〈κ, R∞(z)κ〉
〈ψ(z̄), κ〉

,(13)

B(z) :=
1

〈ψ(z̄), κ〉
,(14)

C(z) := −Q(z)A(z)−〈κ,ψ(z)〉,(15)

D(z) := −Q(z)B(z),(16)

where ψ is given in (6). One verifies from their definition that A(z), B(z), D(z) can be analytically
extended to any point z outside the set given in (11). The function C(z) has a priori poles in spec(A∞),
but by an argument along the lines of [14, Chapter 2, §7.3 and 7.4], one concludes that C(z) can be
analytically extended to any point z outside the set given in (11). �

Remark 3.5. For Jacobi operators, the functions A(z), B(z), C(z), D(z) coincide with the ones given
in [1, Equation 2.28] and [43, Theorem 4.9]. Note that, for the Herglotz function −1/τ , [43, Equation
4.36] is indeed an expression for 〈κ, R−1/τ (z)κ〉.
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Reasoning along the lines of the proof of [43, Theorem 4.17], one obtains the following assertion from
Theorem 3.4.

Theorem 3.6. Let κ be a spectral gauge of A ∈ S(H) and λ a real number. If σ ∈ Vκ(A) \ Vext
κ (A) is

such that σ {λ}> 0, then there exists σ̃ ∈ Vext
κ (A) such that σ̃ {λ}> σ {λ}.

4. On de Branges spaces and a generalization of the moment problem

There are various ways of generalizing the moment problem. We use the generalization proposed by
Livsič [27] (see also [45]). According to [27], the generalized moment problem consists in finding a
measure ρ such that the inner product in a Hilbert space of functions is expressed through the inner
product in L2(R, ρ). Our choice for the Hilbert space of functions is a de Branges space. In [35, Chapter
6], the same choice is done for the generalized moment problem and the treatment is made by means
of canonical systems whose theory contains the one of de Branges spaces (see [37]). In contrast to [35,
Chapter 6], our final goal is the extremal properties of measures.

Definition 4.1. A Hilbert space of entire functions B is a de Branges space if and only if, for any function
f (z) in B, the following conditions holds:

(A1) For all w ∈ C, the linear functional f (·) 7→ f (w) is continuous;

(A2) for every nonreal zero w of f (z), the function f (z)(z − w̄)(z −w)−1 belongs to B and has the
same norm as f (z);

(A3) the function f #(z) := f (z̄) also belongs to B and has the same norm as f (z).

Alternatively, a de Branges space can be defined in terms of an Hermite–Biehler function, that is, an
entire function e(z) such that |e(z)|> |e(z̄)| for all z ∈ C+ [25, Chapter 7]. In that case, the de Branges
space is sometimes denoted B(e) and one has

(17) 〈 f, g〉B =
∫

R

f (x)g(x)
|e(x)|2

dx .

(see [8, §19], [34, Theorem 2.2], [42]). The right-hand side of (17) is justified by the fact that if x is a
real zero of e(z), then x is a zero of greater or equal multiplicity for any function in B(e). We note that
a given de Branges space can be obtained by different Hermite–Biehler functions [7, Theorem 1].

Definition 4.2. Given a de Branges space B, the operator S of multiplication by the independent variable
is defined by

dom(S)= { f (z) ∈ B : z f (z) ∈ B}; (S f )(z)= z f (z), f (z) ∈ dom(S).

It is noteworthy that the operator S is in S(B) [17, Proposition 4.2, Corollary 4.7]. Moreover, to any
operator A in the class S(H), there corresponds a de Branges space such that the operator of multipli-
cation in it is unitarily equivalent to A. To elucidate this, we introduced below the so-called functional
model for operators in S(H).

An involution (conjugation) J :H→H is an antilinear map satisfying

J 2
= I and 〈Jφ, Jψ〉 = 〈ψ, φ〉
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for all φ,ψ ∈H [47, Equation 8.1]. Fix an operator A ∈ S(H) and let J be an involution that commutes
with the selfadjoint extensions of A (there is always such involution because of [40, Proposition 2.3]).
Consider a function ξA : C→H such that

(P1) ξA(z) is zero-free (ξA(z) 6= 0 for all z ∈ C) and entire,

(P2) ξA(z) ∈ ker(A∗− z I ) for all z ∈ C, and

(P3) JξA(z)= ξA(z̄) for every z ∈ C.

Since A ∈ S(H), one has dim ker(A∗ − z I ) = 1 for all z ∈ C. Using this fact, one can prove the
following assertion (see [40, Proposition 2.12 and Remark 2.13]).

Lemma 4.3. If ξ (1)A : C→ H and ξ (2)A : C→ H are two functions satisfying (P1),(P2), and (P3), then
there exists a zero-free real entire function g(z) such that ξ (1)A (z)= g(z)ξ (2)A (z).

There is a standard way of constructing a function ξA(z) with the desired properties: Pick a canonical
selfadjoint extension Aγ of A ∈ S(H) and let hγ (z) be a real entire function whose zero set (counting
multiplicities) equals spec(Aγ ); the existence of this function follows from classical theorems on entire
functions, see [29, Chapter 7, §2]. Then, define

(18) ξA(z) := hγ (z)VAγ (w, z)ψw,

where w ∈ R \ spec(Aγ ), ψw ∈ ker(A∗−w I ) \ {0} and VAγ (w, z) is given by (3). It can be shown that
(18) obeys (P1), (P2) and (P3), the latter relative to a suitable involution [40, Propositions 2.3 and 2.11].
Note that Lemma 4.3 implies that (18) does not depend on the choice of the selfadjoint extension Aγ nor
on w and, furthermore, every function ξA : C→H can be written in the form of (18).

Fix A ∈ S(H) and any function ξA : C→H satisfying (P1), (P2), and (P3). Then define the map

(19) (8Aϕ)(z) := 〈ξA(z̄), ϕ〉, ϕ ∈H.

Due to (P1), 8A linearly maps H onto a linear manifold 8AH of entire functions. By [45, §1], the
complete nonselfadjointness condition ⋂

z∈C\R

ran(A− z I )= {0}

(see [14, Chapter 1, Theorem 2.1]) implies that 8A is injective [42]. Clearly, the linear space 8AH is
turned into a Hilbert space by defining

(20) 〈8Aη,8Aϕ〉 := 〈η, ϕ〉.

The resulting Hilbert space is a de Branges space which is henceforth denoted by BA [40, Proposition
2.14].

Remark 4.4. If A ∈ S(H), then 8A A8−1
A is the multiplication operator S in BA. For any (canonical)

selfadjoint extension Aγ of A, 8A Aγ8−1
A is a (canonical) selfadjoint extension of the multiplication

operator in BA. Moreover, if κ is a spectral gauge of A and m(z)= (8Aκ)(z), then (see Definition 3.1)

Vκ(A)= Vm(S) and Vext
κ (A)= Vext

m (S).



1416 RAFAEL DEL RIO, LUIS O. SILVA AND JULIO H. TOLOZA

Note that, if F is a generalized spectral family of A, then 8A F8−1
A is a generalized spectral family of

S.

The reproducing kernel in the de Branges space BA is

k(z, w)= 〈ξA(z̄), ξA(w̄)〉.

Note that k(z, w) is antientire with respect to its second argument.

Remark 4.5. It is not difficult to verify that k(·, w) ∈ ker(S∗− w̄ I ) for all w ∈ C and moreover

k(z, w)= h(w̄)VSγ (v̄, w̄)k(z, v),

where Sγ is a canonical selfadjoint extension of S given in Definition 4.2 and h(w) is a real entire function
having zeros at spec(Sγ ) (see (6) and (18)).

Lemma 4.6. If κ is a spectral gauge of A ∈ S(H), then the corresponding element m in BA (given by
Remark 4.4) has no zeros in R. Moreover, if the function m in the de Branges space B is such that
m(x) 6= 0 for all x ∈ R, then m is a spectral gauge of the operator of multiplication S in B.

Proof. By our definition of spectral gauge,

〈ξ(z̄), κ〉 6= 0

for any z ∈ R. The second part of the statement follows from noticing that k(·, w) ∈ ker(S∗− w̄ I ) for
all w ∈ C. �

The following definition coincides with [35, Definition 6.1]. We came to it motivated by a generalization
of the moment problem discussed in [27] (see also [45]). Several results in [8] pertain to this definition.

Definition 4.7 (generalized moment problem). Given a de Branges space B, find a Borel measure ρ such
that

〈g, f 〉B =
∫

R

f (x)g(x) dρ(x)

for every f, g ∈ B.

As (17) shows, the Lebesgue measure multiplied by 1/|e(·)|2 is always a solution to the generalized
moment problem for B(e). Below, it will be established that there are other solutions to this generalized
moment problem.

Theorem 4.8. Let S be the operator of multiplication by the independent variable in a de Branges space
B and m be a function in B not vanishing in R. If ρ is a solution to the generalized moment problem for
B, then

σ(∂) :=

∫
∂

|m(x)|2 dρ(x), ∂ ∈ X,

belongs to Vm(S).

Proof. Fix t ∈ R and define

ϒt( f, g) :=
∫ t

−∞

f (x)g(x) dρ(x)
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which is a sesquilinear form in B×B. This form is bounded due to the inequality

ϒt( f, f )≤
∫

R

| f (x)|2dρ(x)= ‖ f ‖2

along with the polarization identity. By [6, Chapter 2, §4, Theorem 6] and well-known results on
sesquilinear forms [33, §II.2], there is a bounded operator F(t) defined on the whole space B such
that

〈g, F(t) f 〉 = ϒt( f, g).

It turns out that F(t) corresponds to a generalized spectral family in the sense of Proposition 2.6. Indeed,
(i)–(iii) are verified directly from the definition. As regards (iv), one verifies∫

R

td〈g, F(t) f 〉 =
∫

R

t f (t)g(t)dρ(t)= 〈g, S f 〉B

and ∫
R

t2d〈 f, F(t) f 〉 =
∫

R

t2 f (t) f (t)dρ(t)= 〈S f, S f 〉B.

Thus, for any real Borel set ∂ ,

Vm(S) 3 〈m, F(∂)m〉 =
∫
∂

|m(x)|2 dρ(x)

since m is a spectral gauge of S by Lemma 4.6. �

Lemma 4.9. Let m ∈ B be such that m(x) 6= 0 when x ∈ R and fix a, b ∈ R such that a < b. If F is a
generalized spectral family of S, then

(F([a, b]) f )(z)=
∫ b

a

f (t)
m(t)

d F(t)m(z)

for any f ∈ B.

Proof. According to Remark 4.5, since m(z) is a spectral gauge of S, the right-hand side of (12) in this
case is ∫ b

a

〈k(·, t), f (·)〉B
〈k(·, t),m(·)〉B

d F(t)m(z) .

The assertion then follows from Proposition 2.16. �

Theorem 4.10. Let S be the operator of multiplication by the independent variable in a de Branges
space B and m be a function in B not vanishing in R. If σ ∈ Vm(S), then

ρ(∂) :=

∫
∂

dσ(x)
|m(x)|2

, ∂ ∈ X,

is a solution to the generalized moment problem for B.

Proof. By the hypothesis and Lemma 4.9,

σ(∂)= 〈m, F(∂)m〉B
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for any real Borel set ∂ . It follows from Lemma 4.9 that

〈g, F[a, b] f 〉B =
∫ b

a

f (t)
m(t)

d〈g, F(t)m〉B.

Also

〈F(t)g,m〉B = 〈F(a)g,m〉B+
∫ t

a

g(x)

m(x)
d〈F(x)m,m〉B

Putting the last two equalities together, one obtains

〈g, F[a, b] f 〉B =
∫ b

a

f (t)g(t)
|m(t)|2

dσ(t)=
∫ b

a
f (t)g(t) dρ(t)

To finish the proof, take the limit when a→−∞ and b→+∞. �

Lemma 4.11. Let S be the operator of multiplication by the independent variable in a de Branges space
B and m be a function in B not vanishing in R. If Sγ is a canonical selfadjoint extension of S and

σ(∂) := 〈m, Eγ (∂)m〉, ∂ ∈ X,

where Eγ is the spectral family of Sγ , then

(f(Sγ )m)(λ)= f(λ)m(λ)

for any f in L2(R, σ ) and λ ∈ spec(Sγ ).

Proof. Using the spectral theorem,

(f(Sγ )m)(z)=
(∫

R

f(t)d Eγ (t)m
)
(z)=

∑
λ∈spec(Sγ )

f(λ)k(z, λ)
〈k(·, λ),m〉B

k(λ, λ)
.

From the last expression the result follows due to the properties of the reproducing kernel. �

Theorem 4.12. Let B, S, and m be as in the previous theorem. Assume that ρ is a solution to the
generalized moment problem and σ is related to it as in Theorem 4.10. A necessary and sufficient
condition for the measure σ to be in Vext

m (S) is that the map 9 between the spaces B and L2(R, ρ) given
by

9 f = f �R

is unitary (that is, linear, surjective and norm-preserving).

Proof. Since ρ is a solution to the generalized moment problem, 9B is contained in L2(R, ρ) and 9
is isometric. Assume that 9 is unitary (by what has just been stated, this means that one only assumes
{ f �R: f ∈ B} = L2(R, ρ)). Let Aρ be the operator of multiplication by the independent variable in
L2(R, ρ) defined in the maximal domain. Since Aρ is selfadjoint, the same holds for 9−1 Aρ9 due to
the fact that 9 is unitary. If f ∈ dom(S), then 9 f ∈ dom(Aρ). Thus, 9−1 Aρ9 is a canonical selfadjoint
extension of S. Denote Sγ :=9−1 Aρ9 and let Eγ be the spectral family of Sγ . For any Borel set ∂ ⊂ R,
define η(∂) := 〈m, Eγ (∂)m〉. By the canonical map (see [2, §69]),

L2(R, η) 3 f 7→ f(Sγ )m ∈ B,



POINT MASS PERTURBATIONS OF SPECTRAL MEASURES 1419

and for any function f in B there is a function f in L2(R, η) such that f = f(Sγ )m. Thus∫
R

f (t)g(t) dρ(t)=
∫

R

f(t)g(t) dη(t),

where f and g are the images of f and g under the canonical map. On the basis of Lemma 4.11, f (t)=
f(t)m(t) and g(t)= g(t)m(t) with the equalities in the L2(R, η) sense. Therefore∫

R

f (t)g(t) dρ(t)=
∫

R

f (t)g(t)
dη(t)
|m(t)|2

.

Since this equality holds for any element in L2(R, ρ), one concludes that η(∂)= σ(∂) for any real Borel
set ∂ and hence σ is extremal, that is, σ ∈ Vext

m (S).
Let us prove the other direction. If σ ∈ Vext

m (S), then σ is the spectral measure of a canonical selfadjoint
extension of S which is known to be simple. By the canonical map (see [2, §69]), B is unitarily equivalent
to L2(R, σ ). In turn, since m is zero-free on the real axis, L2(R, σ ) is unitarily equivalent to L2(R, ρ).
On the other hand, the Hilbert spaces B and 9B ⊂ L2(R, ρ) are unitarily equivalent due to the fact that
ρ is a solution to the moment problem. Therefore, 9B cannot be properly contained in L2(R, ρ). �

Definition 4.13. A solution ρ to the generalized moment problem for B is said to be extremal if the map
9 : B→ L2(R, ρ) given in Theorem 4.12 is unitary.

Unlike the extremal measures (see Definition 3.1), the extremal solutions might not be finite measures.
However, the extremal solutions of the generalized moment problem for B can be finite measures if, for
instance, 1 ∈ B (see Section 6.1).

Let δx : X→ [0, 1] be the measure defined by the rule

δx(∂) :=

{
1 x ∈ ∂,
0 x 6∈ ∂.

Theorem 4.14. Let B be a de Branges space, k(·, w) its reproducing kernel, and Sγ a canonical selfad-
joint extension of the operator of multiplication S. The measure

(21) ργ :=
∑

λ∈spec(Sγ )

δλ

k(λ, λ)

is an extremal solution to the generalized moment problem for B. Reciprocally, every extremal solution
is of the form (21).

Proof. It follows from Remark 4.5 and the equality

ker(Sγ − λI )= ker(S∗− λI )

that {k(·, λ)/‖k(·, λ)‖}λ∈spec(Sγ ) is an orthonormal basis in B. Therefore, a function f is in B if and only
if

(22)
∑

λ∈spec(Sγ )

| f (λ)|2

k(λ, λ)
<+∞
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and one has the following interpolation formula:

(23) f (z)=
∑

λ∈spec(Sγ )

k(z, λ)
k(λ, λ)

f (λ)

holds, where the convergence is in the sense of Hilbert space, hence uniform in compact subsets of C.
Thus, if ργ is given by (21), then every f in L2(R, ργ ) satisfies (22) and, through the interpolation
formula (23), it is mapped into a function in B whose restriction to the real axis is the function f . The
identity

‖ f ‖2B =
∑

λ∈spec(Sγ )

| f (λ)|2

k(λ, λ)
= ‖ f ‖2L2(R,ργ )

implies that 9 is norm-preserving.
Conversely, if ρ is an extremal solution, then supp ρ coincides with spec(Sγ ) for some γ as a conse-

quence of Theorem 4.12. Therefore, if one fixes λ ∈ spec(Sγ ) and considers any f in L2(R, ρ) whose
zero set is spec(Sγ ) \ {λ}, then

| f (λ)|2

k(λ, λ)
= ‖ f ‖2B = ‖ f ‖2L2(R,ρ)

= c| f (λ)|2.

This shows that the weight c of the measure ρ at λ is equal to 1/k(λ, λ). �

Remark 4.15. Assume that A ∈ S(H) and take the measure ργ as defined in Theorem 4.14 for the
corresponding de Branges space BA. The multiplication by the independent variable in L2(R, ργ ) is
unitarily equivalent to a canonical selfadjoint extension Aγ of A. Note that one can write

ργ =
∑

λ∈spec(Sγ )

δλ

‖ξA(λ)‖2
.

It is worth remarking that in the Sturm–Liouville theory (when A is associated with a regular Sturm–
Liouville difference expression) the measure ργ given above is usually defined via the Weyl function and
is called the spectral measure of the selfadjoint operator Aγ (see details in Section 6.2).

5. Point mass perturbations of measures

Lemma 5.1. Let B be a de Branges space with inner product 〈·, ·〉B. Given a > 0 and λ ∈ R, define

(24) 〈g, f 〉∼ := 〈g, f 〉B+ ag(λ) f (λ), f, g ∈ B.

Then the linear manifold B equipped with the inner product 〈·, ·〉∼ is a de Branges space.

Proof. B is closed with respect to 〈·, ·〉∼. Indeed, let { fn}
∞

0 ⊂ B be a ∼-Cauchy sequence. Since
‖·‖∼ ≥ ‖·‖B, { fn}

∞

0 is also B-Cauchy. Then, there exists g ∈ B such that ‖ fn − g‖B → 0. Since
| fn(λ)− g(λ)|2 ≤ k(λ, λ)‖ fn − g‖2B, one obtains

‖ fn − g‖2
∼
≤ ‖ fn − g‖2B+ ak(λ, λ)‖ fn − g‖2B,

implying the assertion.
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Now we prove (A1)–(A3) of Definition 4.1. Since

| f (w)− g(w)|2 = |〈k(·, w), f − g〉|2 ≤ k(w,w)‖ f − g‖2B ≤ k(w,w)‖ f − g‖2
∼
,

it follows that point evaluation is continuous with respect to the ∼-norm.
From the equality

‖ f #
‖

2
∼
= ‖ f #

‖
2
B+ a| f #(λ)|2 = ‖ f ‖2B+ a| f (λ)|2 = ‖ f ‖2

∼
,

it follows that the mapping f 7→ f # (see (A3) in Definition 4.1) is a ∼-isometry in B.
Finally, suppose w ∈ C \R is a zero of f ∈ B and define g(z) := (z− w̄)(z−w)−1 f (z). Then, g ∈ B

and

‖g‖2
∼
= ‖g‖2B+ a

∣∣∣λ−w̄
λ−w

∣∣∣2| f (x)|2 = ‖ f ‖2B+ a| f (x)|2 = ‖ f ‖2
∼
. �

Lemma 5.1 has the following corollary.

Corollary 5.2. Let B be a de Branges space. If ρ is a solution to the generalized moment problem for B,
then ρ+ aδλ (a > 0, λ 6∈ supp ρ) is a solution to the generalized moment problem for a de Branges space
B∼ having the same elements as B but with inner product given by (24).

Proof. The statement follows from the equality∫
R

g(x) f (x) d(ρ+ aδλ)= 〈g, f 〉B+ ag(λ) f (λ). �

Theorem 5.3. Let S be the operator of multiplication by the independent variable in a de Branges space
B and m be a function in B not vanishing in R. If σ ∈ Vm(S), then

σ + a|m(λ)|2δλ, a > 0, λ 6∈ supp(σ ),

is in Vm(S̃) \ Vext
m (S̃), where S̃ is the multiplication operator in the de Branges space B∼ given in

Corollary 5.2.

Proof. By hypothesis, ρ given in Theorem 4.10 is a solution to the generalized moment problem for B.
By Corollary 5.2, ρ + aδλ is a solution to the generalized moment problem for B∼ and Theorem 4.8
implies that

σ + a|m(λ)|2δλ ∈ Vm(S̃).

On the other hand, Corollary 3.3 yields a measure σλ ∈ Vext
m (S) such that σλ{λ} > 0. The function ρλ,

related to σλ as in Theorem 4.10, is a solution to the generalized moment problem for B. Recurring again
to Corollary 5.2, one concludes that ρλ+ aδλ is a solution to the generalized moment problem for B∼.
Thus, in view of Theorem 4.8,

σλ+ a|m(λ)|2δλ ∈ Vm(S̃).

Since λ ∈ supp(σλ) \ supp(σ ), one has

(σλ+ a|m(λ)|2δλ){λ}> (σ + a|m(λ)|2δλ){λ}> 0.

Assume that σ + a|m(λ)|2δλ is extremal. If σλ+ a|m(λ)|2δλ is extremal, then a contradiction arises from
Corollary 3.3. If σλ + a|m(λ)|2δλ is not extremal, then, using Theorem 3.6, one obtains an extremal
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measure giving weight to λ so again we have a contradiction by Corollary 3.3. Therefore σ + a|m(λ)|2δλ
is not in Vext

m (S̃). �

Theorem 5.4. Let B and B′ be de Branges spaces such that they are set-wise equal. If ρ is a solution to
the generalized moment problem for B, then ρ + aδλ (a > 0, λ 6∈ supp ρ) is not an extremal solution to
the generalized moment problem for B′.

Remark 5.5. Before proving the assertion, there are two points to comment. First, the measure ρ+ aδλ
is not necessarily a solution of the generalized moment problem for B′. Second, the particular case when
in the hypothesis ρ is an extremal solution has interesting applications (see Corollary 5.7 and Section 6).

Proof. Assume that ρ+ aδλ is an extremal solution to the generalized moment problem for B′. Thus,

‖ f ‖2B′ =
∫

R

| f (x)|2 dρ+ a| f (λ)|2

By hypothesis,

‖ f ‖2B =
∫

R

| f (x)|2 dρ.

Therefore the inner products of B and B′ are related as in (24). Now, since ρ and ρ+ aδλ generate via
Theorem 4.8 spectral measures of the operators of multiplication in B and B′, one obtains a contradiction
from Theorem 5.3. �

Remark 5.6. There is an alternative proof of Theorem 5.4. Indeed, assume that ρ+ aδλ is an extremal
solution of the moment problem for B′ and consider a function g ∈ L2(R, ρ + aδλ) whose zero set is
supp ρ. Thus, ‖g‖L2(R,ρ+aδλ) 6= 0 and, since 9 is surjective and norm preserving, the function 9−1g is a
nonzero element of B′ and therefore a nonzero element of B. But we get a contradiction since the norm
of the restriction to the real line of 9−1g has zero norm in L2(R, ρ).

Corollary 5.7. Let ρ be a solution to the generalized moment problem for a de Branges space B. If
A⊂9B is dense in L2(R, ρ), then A is not dense in L2(R, ρ+ aδλ), where a > 0 and x 6∈ supp(ρ).

Proof. The hypothesis implies that ρ is an extremal solution, i.e., 9B = L2(R, ρ). As in Corollary 5.2,
let B∼ be the de Branges space having the same elements of B with the inner product given by (24). Then
9B∼, which contains A, is not dense in L2(R, ρ+ aδλ) as a consequence of Theorem 5.4. �

Remark 5.8. Note that a function is square-integrable with respect to ρ if and only if it is square-
integrable with respect to ρ+ aδλ. Nevertheless, there are functions in the equivalence class of zero in
L2(R, ρ) which have nonzero norm in L2(R, ρ+ aδλ).

6. Examples

6.1. The classical moment problem. According to [1, Theorem 2.1.1], for a given real sequence {sk}
∞

k=0,
there exists a Borel measure ρ such that

sk =

∫
R

tk dρ(t) for k = 0, 1, . . .
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if and only if, for all k ∈ N,

(25) det

s0 . . . sk
...

...
...

sk . . . s2k

> 0.

The measure is said to be a solution to the moment problem given by the sequence {sk}
∞

k=0. We refer to
all sequences {sk}

∞

k=0 satisfying (25) and normalized so that s0 = 1 as sequences of moments. To any
sequence of moments there corresponds one and only one Jacobi matrix

(26)


q1 b1 0 0 · · ·
b1 q2 b2 0

0 b2 q3 b3
. . .

0 0 b3 q4
. . .

...
. . .

. . .
. . .

 ,

where {qk}
∞

k=1 is a sequence of real numbers and {bk}
∞

k=1 is a sequence of positive numbers (see [1,
paragraph after Equation 1.8] and [43, p. 93]).

Given a separable Hilbert space H and an orthonormal basis {ηk}
∞

k=1, with any matrix (26), one can
uniquely associate a closed symmetric operator [2, §47]. This operator, denoted by A and called minimal
Jacobi operator, has either deficiency indices n+(A) = n−(A) = 0 or n+(A) = n−(A) = 1 [5, Chapter
7, Theorem 1.1]. When the Jacobi operator has deficiency indices (0, 0) the matrix (26) is said to
be in the limit point case, otherwise the matrix (26) is said to be in the limit circle case. Due to the
bijection between Jacobi matrices and sequences of moments, the limit point and limit circle dichotomy
corresponds to the determinate and indeterminate dichotomy for sequences of moments.

It is established in [1, Chapter 4] that

(27) sk = 〈η1, Akη1〉 for k = 0, 1, . . .

This shows that if A has deficiency indices n+(A)= n−(A)= 1, then the spectral measures of canonical
selfadjoint extensions are solutions of the moment problem, i.e., an indeterminate sequence of moments
admits various solutions. According to [1, Corollary 2.2.4], when the deficiency indices n+(A) and
n−(A) vanish, there are only one solution to the moment problem. This justifies the terminology.

A Jacobi operator A with deficiency indices n+(A)= n−(A)= 1 is in S(H). Indeed, if one assumes
that λ is in the spectral kernel of A, then λ ∈ spec(Aγ ) for any selfadjoint extension Aγ of A since the
spectral kernel does not decrease under extensions. But the spectra of canonical selfadjoint extensions
of A are disjoint (see the proof of [1, Theorem 4.2.4]. We assume henceforth in this example that the
Jacobi operator A is not selfadjoint.

The function defined in (18) is given in this case by ξA(z) =
∑
∞

k=1 Pk−1(z)ηk , where Pk is the k-th
orthogonal polynomial of the first kind associated with (26) (see [1, Chapter 1, §2; Chapter 4, §1] and
[5, Chapter 7, §2 ]). Thus we have the unitary map 8A :H→ BA given by (19). Note first that, since
the finite linear combinations of the basis {ηk}

∞

k=1 are dense in H, the polynomials are dense in BA. This
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is a peculiarity of de Branges spaces generated by Jacobi operators. Also,

(8A Aη1)(z)= 〈ξA(z̄), Aη1〉 = 〈A∗ξA(z̄), η1〉 = 〈z̄ξA(z̄), η1〉 = z

since 〈ξA(z̄), η1〉 = 1. Thus

(28) (8A Akη1)(z)= zk for all k ∈ N∪ {0} .

Theorem 6.1. The measure ρ is a solution to an indeterminate moment problem if and only if ρ is a
solution to the generalized moment problem for BA.

Proof. Assume that ρ is a solution to the generalized moment problem for BA. Then, in view of (27) and
(28), one has

sk = 〈1, zk
〉BA =

∫
R

tk dρ(t) for k = 0, 1, . . .

which means that ρ is a solution to the moment problem given by {sk}
∞

k=0.
Now, suppose that ρ is a solution to the moment problem given by {sk}

∞

k=0. Hence, by (27), one has∫
R

tk dρ(t)= 〈η1, Akη1〉 for k = 0, 1, . . . ,

where A is the Jacobi operator associated with the sequence {sk}
∞

k=0. One then verifies that if R(t) is a
polynomial, then ∫

R

|R(t)|2 dρ(t)= 〈R(A)η1, R(A)η1〉 = ‖R‖BA ,

where (28) is used to obtain the second equality.
For completing the proof, one uses the fact that the polynomials are dense in BA and the polarization

identity. �

In the context of the classical moment problem, Theorem 5.3 corresponds to [36, Proposition 4.1(a)],
which says that if ρ is an extremal solution to an indeterminate moment problem, then ρ+ aδλ (a > 0,
λ 6∈ supp ρ) is not extremal although is a solution to a moment problem. Thus, according to Corollary 5.7,
the density of the polynomials in L2(R, ρ) no longer holds in L2(R, ρ+ aδλ). Note that the sequences
of moments for which ρ and ρ+ aδλ are solutions do not coincide, therefore the corresponding Jacobi
operators differ from one another, as well as the related de Branges spaces. However, these de Branges
spaces are set-wise equal, which is actually a consequence of the fact that the set of polynomials are
dense in these two spaces and the norms are equivalent (see the proof of Lemma 5.1).

We conclude this example by pointing out that it was probably first mentioned in [13, Remark 4.5 (iii)]
that the set of points obtained by adding a point to the spectrum of a selfadjoint extension of a discrete
Schrödinger operator in the limit circle case is no longer the spectrum of a selfadjoint extension of a
discrete Schrödinger operator in the limit circle case (see [12, §7, Example 2] and [26, Chapter 2, §7]).

6.2. Schrödinger operators with measures. The following example is based on [4] (see also [28]). Let
us consider the differential expression given informally by

τµ := −
d2

dx2 +µ, x ∈ [0, b],
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where µ is a signed Borel measure on [0, b]. Properly, for a function ϕ in AC[0, b] (the space of
absolutely continuous functions on [0, b]), we define

(29) ϕ[1](x) := ϕ′(x)−
∫
[0,x]

ϕ(t) dµ(t),

then we define

(30) dom(τµ) := {ϕ ∈ AC[0, b] : ϕ[1] ∈ AC[0, b]}, τµϕ := −(ϕ
[1])′.

The derivative of an element ϕ ∈ dom(τµ) has a (unique) representative for which (29) holds for every
x ∈ [0, b]; in what follows ϕ′ will denote this particular representative. From [4, Theorem 2.4] it follows
that ϕ′ may have discontinuities. Indeed,

(31) ϕ′(x)−ϕ′(x−)= ϕ(x)µ({x}), x ∈ (0, b].

Let ξ(z, x) be the solution to the eigenvalue equation τµϕ = zϕ, z ∈ C, in the sense given by (30), that
satisfies the initial conditions ξ(z, 0)= 1, ξ [1](z, 0)= 0. By [4, Theorem 2.3], this solution exists and is
a real entire function of z for every fixed x ∈ [0, b].

Let A denote the symmetric operator in L2(0, b) given by

(32) dom(A) := {ϕ ∈ dom(τµ) : τµϕ ∈ L2(0, b), ϕ[1](0)= ϕ′(b−)= ϕ(b)= 0}, Aϕ := −(ϕ[1])′.

The boundary condition ϕ[1](0)= 0 is just the usual one ϕ′(0)+ hϕ(0)= 0 with h =−µ({0}). On the
other hand, the boundary condition at b is consequence of (31) plus the fact that A is the closure of the
minimal operator.

Standard arguments yields that A has deficiency indices (1, 1) and ξ(z, ·) ∈ ker(A∗− z I ) for all z ∈ C.
Since Green’s identity holds true for this kind of operators [4, Theorem 2.2], its canonical selfadjoint
extensions are defined in the usual way,

dom(Aγ ) :=
{
ϕ ∈ dom(τµ) : τµϕ ∈ L2(0, b), ϕ[1](0)= 0,

ϕ(b) cos γ +ϕ′(b) sin γ = 0, fixed γ ∈ [0, π)

}
, Aγϕ := −(ϕ[1])′.

The de Branges space associated to A is given by

(33) BA :=

{
f (z)=

∫ b

0
ξ(z, x)ϕ(x) dx : ϕ ∈ L2(0, b)

}
, ‖ f ‖BA := ‖ϕ‖L2(0,b).

BA is isometrically equal to B(eb), where eb(z)= ξ(z, b)+ iξ ′(z, b) is an Hermite–Biehler function as
shown in [4, Proposition 4.1]. Thus, since A is unitarily equivalent to the multiplication operator in BA,
A ∈ S(L2(0, b)).

The solutions of the generalized moment problem for BA correspond to the generalized spectral mea-
sures of A. Let us consider here the extremal solutions of the generalized moment problem. According
to Theorem 4.14 and Remark 4.15, any extremal solution is given by

(34) ργ =
∑

λ∈spec(Aγ )

δλ

‖ξ(·, λ)‖2L2(0,b)
,
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where Aγ is a selfadjoint extension of A. As in the classical Sturm–Liouville theory, the Fourier transform
introduced in (33) generates an unitary map between L2(0, b) and L2(R, dργ ) [4, §3].

Theorem 6.2. Let A be the generalized Schrödinger operator defined by τµ as in (32). Let Aγ be an
arbitrarily chosen selfadjoint extension of A and ργ the corresponding spectral measure given in (34). If

ρ̃ = ργ + sδλ

with λ 6∈ spec(Aγ ) and s > 0, then:

(a) There is no signed Borel measure ν in [0,b] such that ρ̃ is the spectral measure corresponding to
selfadjoint extensions of Ã generated by τν .

(b) The set of functions

(35)
{

f (y) :=
∫ b

0
cos(
√

yx)ϕ(x) dx : ϕ ∈ L2(0, b)
}
, y ∈ R,

has no trivial orthogonal complement in L2(R, ρ̃).

Proof. According to [4, Theorem 4.4], the set of functions in the de Branges space BA coincides with
the linear set {

f (z)=
∫ b

0
cos(
√

zx)ϕ(x) dx : ϕ ∈ L2(0, b)
}
,

for any signed Borel measure supported in [0, b]. Then, assertion (a) is a direct consequence of Theorem 5.4
while (b) follows from Theorems 4.12 and 5.3. �

Remark 6.3. We note that regular Schrödinger operators are included in Theorem 6.2 as they correspond
to signed Borel measures µ that are absolutely continuous with respect to the Lebesgue measure, i.e.,

(36) dµ(x)= q(x) dx with q ∈ L1(0, b).

For these cases, assertion (a) of Theorem 6.2 can be also shown using an elementary argument based
on the fact that, the eigenvalues of a regular Schrödinger operator with Neumann boundary condition at
the origin and any selfadjoint condition at b (Dirichlet case excluded) obey an asymptotic formula of the
form

(37) λn = cn2
+ O(1), n→∞,

for some c > 0 (see [16, Remark 1] and [32]). Clearly, the addition of a point to the spectrum amounts to
shifting the enumeration by 1, producing an asymptotic formula with an additional nontrivial term linear
in n not present in (37). An analogous reasoning holds for the case of Dirichlet boundary condition at b.
We remark that Theorem 6.2 holds for a wide class of perturbations of the regular Laplacian for which we
do not have at our disposal an asymptotic formula of the kind of (37) for the spectra of the corresponding
selfadjoint extensions. The asymptotics for Schrödinger operators with singular potentials, which we are
aware of (see [38, Theoreom 4]), are not sufficiently precise for using the argumentation given above to
exclude the possibility of adding an eigenvalue.
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The example presented here is also related via [34, §17] to the Gelfand–Levitan theory for half-line
Schrödinger operators. Let us discuss this in detail. In [12] and [34, Sec. 17] the spectral measure of the
half-line Schrödinger operator is defined as follows. Suppose in (36) that q ∈ L1,loc([0,∞)) (with fixed
boundary conditions at 0) and take into account that ξ(x, z) is the same for any right endpoint b ∈ R. A
spectral measure of the half-line Schrödinger operator is a measure ρ such that the Parseval identity

(38) ‖ϕ‖2L2(0,b) = ‖ f ‖2BA
=

∫
R

| f (λ)|2 dρ(λ)

holds for every f =8Aϕ ∈
⋃

b>0 BA (see (33) and compare with [12, Equation 2] and [34, Theorem 3.2]).
The classical Weyl theory tells us that a Schrödinger expression has exactly one spectral measure if q is
in the limit point case at infinity, otherwise it has an infinite set of spectral measures. We remark that
in the limit circle case, the definition of spectral measure given above includes measures which do not
correspond to selfadjoint operators in L2(0,∞) (see in [12, §8] complementary conditions for a spectral
measure to correspond to selfadjoint extensions).

The central result in Gelfand–Levitan theory is a theorem on necessary and sufficient conditions for a
measure to be a spectral measure of a half-line Schrödinger operator, that is, the necessary and sufficient
conditions on ρ such that there is a potential function q ∈ L1,loc([0,∞)) ensuring that (38) holds. Due
to the nonlocality of the conditions (see [12, Introduction]), if ρ is a spectral measure of a half-line
Schrödinger operator, then there is a potential such that ρ + sδλ (with λ 6∈ supp ρ and s > 0) is the
spectral measure of the half-line Schrödinger operator with that potential and same boundary condition
at 0 (see [12, §7, Example 2] and [26, Chapter 2, §7]).

Note that the last statement is not in contradiction with Theorem 6.2. Actually, the results of this paper
and the theory of perturbations of chains of de Branges spaces developed in [48] can be used to study
the point mass perturbations of spectral measures of a half-line Schrödinger operator. This remains to
be done.

To conclude this example, let us revisit the assertion of Theorem 6.2(a) at the light of [4, §5, 6]. It
is now relevant to keep track of the signed measure defining the operators, so let us denote by A(µ) the
operator given in (32). By [4, Theorems 5.2, 6.1 and 6.2], we know that there is a bijective correspondence
between the set of signed Borel measures µ in [0, b], and the set of even functions v on (−2b, 2b) of
bounded variation such that

(39) v(0)=−µ({0})

and the operator I + Kv is positive definite, where

(Kvϕ)(x)= 1
2

∫ b

0
(v(t − x)+ v(t + x))ϕ(t) dt.

If µ and v are connected by this correspondence, then

‖ f ‖2BA(µ)
= 〈8−1

A(0) f, (I + Kv)8
−1
A(0) f 〉L2(0,b).

Theorem 6.4. Assume the same hypothesis of Theorem 6.2. Then, there is a signed Borel measure ν such
that ρ̃ is a nonextremal solution to the generalized moment problem for BA(ν).
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Proof. In view of Theorem 6.2(a), it only remains to prove the existence of a signed Borel measure ν
such that, for the corresponding space BA(ν), the equality

(40) ‖ f ‖2BA(ν)
=

∫
R

| f (λ)|2 dρ̃(λ)

holds. From the linearity of Kv as a map on the function v, we can assume without loss of generality
that ργ is given by (34) for a selfadjoint extension of A(0). Thus,

‖ f ‖2BA(ν)
= ‖8−1

A(0) f ‖2L2(0,b)+ s| f (λ)|2.

According to [4, Theorem 6.1] (see above), the proof will be established, once we find an even function
v on (−2b, 2b) of bounded variation such that

〈8−1
A(0) f, Kv8

−1
A(0) f 〉 = s| f (λ)|2.

However, using the notation introduced in Section 4,

s| f (λ)|2 = s〈8−1
A(0) f, ξA(0)(λ)〉〈ξA(0)(λ),8

−1
A(0) f 〉 = 〈8−1

A(0) f, s〈ξA(0)(λ),8
−1
A(0) f 〉ξA(0)〉.

So Kv must be equal to s〈ξA(0)(λ), ·〉ξA(0)(λ). Therefore, using the fact that ξA(0)(λ, ·)= cos(
√
λ ·), we

have

(Kvϕ)(x)= s
∫ b

0
ξA(0)(λ, t)ξA(0)(λ, x)ϕ(t) dt

= s
∫ b

0
cos(
√
λt) cos(

√
λx)ϕ(t) dt

=
1
2 s
∫ b

0
(cos(
√
λ(t + s))+ cos(

√
λ(t − s)))ϕ(t) dt,

which yields v(·)= s cos(
√
λ ·). �

For the function v found in the proof above, v(0) 6= 0. Thus, according to Remark 6.3 and (39), the point
mass perturbation of an extremal spectral measure of a regular Schrödinger operator is a nonextremal
spectral measure of a nonregular Schrödinger operator with measure-valued potential.

6.3. Bessel operators. Given b ∈ (0,∞), consider the differential expression

(41) τq := −
d2

dx2 +
ν2
− 1/4
x2 + q(x), x ∈ (0, b), ν ∈ [0,∞).

We assume that q ∈ L1,loc(0, b) is a real-valued function such that q̃ ∈ L1(0, b), where

(42) q̃(x) :=
{

xq(x) if ν > 0,
x(1− log(x))q(x) if ν = 0.

As shown in [18, Theorem 2.4], τq is regular at x = b whereas at x = 0 it is in the limit point case
if ν ≥ 1 or in the limit circle case if ν ∈ [0, 1). For the later case we assume the additional boundary
condition

(43) lim
x→0+

xν−1/2((ν+ 1
2

)
ϕ(x)− xϕ′(x)

)
= 0.
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The expression (41), along with the boundary condition (43) when ν ∈ [0, 1), gives rise to a closed,
regular, symmetric operator A, whose deficiency indices (1, 1) [41, §4].

The corresponding canonical selfadjoint extensions Aγ are defined as usual,

(44) dom(Aγ ) :=


ϕ ∈ L2(0, b) : ϕ, ϕ′ ∈ AC(0, b], τqϕ ∈ L2(0, b),

boundary condition (43) if ν ∈ [0, 1),

ϕ(b) cos γ +ϕ′(b) sin γ = 0, fixed γ ∈ [0, π)

 , Aγϕ := τqϕ.

For every γ ∈ [0, π), the spectrum of Aγ , beside of being simple and discrete, has at most a finite number
of negative eigenvalues [18, Theorem 2.4].

By [18, Lemma 2.2], the eigenvalue equation τϕ= zϕ (z ∈C) admits a solution ξ(z, x), real entire with
respect to z, with derivative ξ ′(z, x) also real entire. Moreover, ξ(z, x) also obeys boundary condition
(43) whenever ν ∈ (0, 1). This in turn implies ξ(z, ·) ∈ ker(A∗− z I ) for all z ∈ C. Hence, the associated
de Branges space is

(45) BA :=

{
f (z)=

∫ b

0
ξ(z, x)ϕ(x)dx : ϕ ∈ L2(0, s)

}
, ‖F‖BA = ‖ϕ‖L2(0,b).

Also, the extremal solutions of the corresponding generalized moment problem are given by

(46) ργ =
∑

λ∈spec(Aγ )

δλ

‖ξ(·, λ)‖2L2(0,b)
,

where Aγ is any selfadjoint extension of A. We now have the following statement analogous to Theorem 6.2.

Theorem 6.5. Suppose ν > 0, and q ∈ L1,loc(0, b) such that q̃ ∈ Lr (0, b) for some r ∈ (2,∞]. Let A be
the Bessel operator defined by τq as in (32). Let Aγ be an arbitrarily chosen selfadjoint extension of A
and ργ the corresponding spectral measure given in (46). If

ρ̃ = ργ + sδλ

with λ 6∈ spec(Aγ ) and s > 0, then:

(a) There is no p ∈ L1,loc(0, b) with p̃ ∈ Lr (0, b) for some r ∈ (2,∞] such that ρ̃ is the spectral measure
corresponding to selfadjoint extensions of Ã generated by τp.

(b) The set of entire functions

(47)
{

f (z) :=
√
π
2 z−ν/2

∫ b

0

√
x Jν(
√

zx)ϕ(x) dx : ϕ ∈ L2(0, b)
}

is a proper subset of L2(R, ρ̃), where Jν denotes the Bessel function of the first kind.

Proof. The assertions follow from Theorem 4.12, Theorem 5.3 and Theorem 5.4, this time combined
with [41, Theorem 4.2]. �

Remark 6.6. The requirement on q̃ stated in Theorem 6.5 is a technical limitation related to the pertur-
bative argument used in the proof of [41, Theorem 4.2]. The technique used there can be easily modified
to include r = 2 but breaks down for r ∈ [1, 2).
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We emphasize that our theory does not rule out the possibility that ρ̃ is the spectral measure of a Bessel
operator for some different value of the parameter ν. In this respect, it is worth noticing the following:
Assuming r ≥ 2 and resorting to [18, Theorem 2.5], one can show that the eigenvalues of Aγ obey the
asymptotic formula

(48) λn =
π2

b2 (n+ κν)
2
+ O(n1/2), n→∞, κν :=

{
(2ν+ 1)/4, γ 6= 0,
(2ν− 1)/4, γ = 0.

This implies that, contrary to the case of regular Schrödinger operators, the addition of a point to the
spectrum is still compatible with (48) but for a different value of ν, namely, for ν̃ = ν+ 2.
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